Skip to content

Commit

Permalink
Merge pull request #11 from sofroniewn/optimal_geometry
Browse files Browse the repository at this point in the history
Add optimal_geometry method
  • Loading branch information
mfkasim1 authored Mar 10, 2022
2 parents 864fbe4 + a678f31 commit 0fe821f
Show file tree
Hide file tree
Showing 6 changed files with 170 additions and 4 deletions.
47 changes: 46 additions & 1 deletion dqc/api/properties.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,8 @@
convert_raman_ints

__all__ = ["hessian_pos", "vibration", "edipole", "equadrupole", "is_orb_min",
"lowest_eival_orb_hessian", "ir_spectrum", "raman_spectrum"]
"lowest_eival_orb_hessian", "ir_spectrum", "raman_spectrum",
"optimal_geometry"]

# This file contains functions to calculate the perturbation properties of systems.

Expand Down Expand Up @@ -317,6 +318,28 @@ def is_orb_min(qc: BaseQCCalc, threshold: float = -1e-3) -> bool:
eival = lowest_eival_orb_hessian(qc)
return bool(torch.all(eival > threshold))

def optimal_geometry(qc: BaseQCCalc, length_unit: Optional[str] = None) -> torch.Tensor:
"""
Compute the optimal atomic positions of the system.
Arguments
---------
qc: BaseQCCalc
Quantum Chemistry calculation that has run.
length_unit: str or None
The returned unit. If ``None``, returns in atomic unit.
Returns
-------
torch.Tensor
Tensor with shape ``(natoms, ndim)`` represents the position
of atoms at the optimal geometry.
"""
atompos = _optimal_geometry(qc)
atompos = convert_length(atompos, to_unit=length_unit)
return atompos

@memoize_method
def _hessian_pos(qc: BaseQCCalc) -> torch.Tensor:
# calculate the hessian in atomic unit
Expand Down Expand Up @@ -460,6 +483,28 @@ def _equadrupole(qc: BaseQCCalc) -> torch.Tensor:

return quadrupole + ion_quadrupole

@memoize_method
def _optimal_geometry(qc: BaseQCCalc) -> torch.Tensor:
# calculate the optimal geometry
system = qc.get_system()
atompos = system.atompos

# check if the atompos requires grad
_check_differentiability(atompos, "atom positions", "optimal geometry")

# get the energy for a given geometry
def _get_energy(atompos: torch.Tensor) -> torch.Tensor:
new_system = system.make_copy(moldesc=(system.atomzs, atompos))
new_qc = qc.__class__(new_system).run()
ene = new_qc.energy() # calculate the energy
return ene

# get the minimal enery position
minpos = xitorch.optimize.minimize(_get_energy, atompos, method="gd", maxiter=200,
step=1e-2)

return minpos

########### helper functions ###########

def _jac(a: torch.Tensor, b: torch.Tensor, create_graph: Optional[bool] = None,
Expand Down
10 changes: 9 additions & 1 deletion dqc/system/base_system.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,6 +80,14 @@ def requires_grid(self) -> bool:
def getparamnames(self, methodname: str, prefix: str = "") -> List[str]:
pass

@abstractmethod
def make_copy(self, **kwargs) -> BaseSystem:
"""
Returns a copy of the system identical to the orginal except for new
parameters set in the kwargs.
"""
pass

####################### system properties #######################
@abstractproperty
def atompos(self) -> torch.Tensor:
Expand Down Expand Up @@ -129,4 +137,4 @@ def efield(self) -> Optional[Tuple[torch.Tensor, ...]]:
Returns the external electric field of the system, or None if there is
no electric field.
"""
pass
pass
31 changes: 31 additions & 0 deletions dqc/system/mol.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
from __future__ import annotations
from typing import List, Union, Optional, Tuple, Dict
import warnings
import torch
Expand Down Expand Up @@ -294,6 +295,36 @@ def getparamnames(self, methodname: str, prefix: str = "") -> List[str]:
else:
raise KeyError("Unknown methodname: %s" % methodname)

def make_copy(self, **kwargs) -> Mol:
"""
Returns a copy of the system identical to the orginal except for new
parameters set in the kwargs.
Arguments
---------
**kwargs
Must be the same kwargs as Mol.
"""
# create dictionary of all parameters
parameters = {
'moldesc': (self.atomzs, self.atompos),
'basis': self._basis_inp,
'orthogonalize_basis': self._orthogonalize_basis,
'ao_parameterizer': self._aoparamzer,
'grid': self._grid_inp,
'spin': self._spin,
'charge': self._charge,
'orb_weights': None,
'efield': self._efield,
'vext': self._vext,
'dtype': self._dtype,
'device': self._device
}
# update dictionary with provided kwargs
parameters.update(kwargs)
# create new system
return Mol(**parameters)

################### properties ###################
@property
def atompos(self) -> torch.Tensor:
Expand Down
31 changes: 30 additions & 1 deletion dqc/system/sol.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
from __future__ import annotations
from typing import Optional, Tuple, Union, List, Dict
import torch
import numpy as np
Expand Down Expand Up @@ -68,6 +69,7 @@ def __init__(self,
self._dtype = dtype
self._device = device
self._grid_inp = grid
self._basis_inp = basis
self._grid: Optional[BaseGrid] = None
charge = 0 # we can't have charged solids for now

Expand Down Expand Up @@ -99,7 +101,8 @@ def __init__(self,
self._orb_weights = _orb_weights
self._orb_weights_u = _orb_weights_u
self._orb_weights_d = _orb_weights_d
self._lattice = Lattice(alattice)
self._alattice_inp = alattice
self._lattice = Lattice(self._alattice_inp)
self._lattsum_opt = PBCIntOption.get_default(lattsum_opt)

def densityfit(self, method: Optional[str] = None,
Expand Down Expand Up @@ -240,6 +243,32 @@ def requires_grid(self) -> bool:
def getparamnames(self, methodname: str, prefix: str = "") -> List[str]:
pass

def make_copy(self, **kwargs) -> Sol:
"""
Returns a copy of the system identical to the orginal except for new
parameters set in the kwargs.
Arguments
---------
**kwargs
Must be the same kwargs as Sol.
"""
# create dictionary of all parameters
parameters = {
'soldesc': (self.atomzs, self.atompos),
'alattice': self._alattice_inp,
'basis': self._basis_inp,
'grid': self._grid_inp,
'spin': self._spin,
'lattsum_opt': self._lattsum_opt,
'dtype': self._dtype,
'device': self._device
}
# update dictionary with provided kwargs
parameters.update(kwargs)
# create new system
return Sol(**parameters)

################### properties ###################
@property
def atompos(self) -> torch.Tensor:
Expand Down
30 changes: 29 additions & 1 deletion dqc/test/test_properties.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
import psutil
from dqc.api.properties import hessian_pos, vibration, edipole, equadrupole, \
ir_spectrum, raman_spectrum, is_orb_min, \
lowest_eival_orb_hessian
lowest_eival_orb_hessian, optimal_geometry
from dqc.system.mol import Mol
from dqc.qccalc.hf import HF
from dqc.xc.base_xc import BaseXC
Expand Down Expand Up @@ -441,3 +441,31 @@ def get_jac_ene(atomposs, efield, grad_efield):
# raman spectra intensities
torch.autograd.gradgradcheck(get_jac_ene, (atomposs.detach(), efield, grad_efield.detach()),
atol=3e-4)

def test_optimal_geometry(h2o_qc):
# test if the optimal geometry of h2o similar to pyscf
# from CCCBDB (calculated geometry for H2O)
pyscf_h2o_opt = h2o_qc.get_system().atompos

# create a new h2o with poor initial geometry
h2o_init = torch.tensor([
[0.0, 0.0, 0.214],
[0.0, 1.475, -0.863],
[0.0, -1.475, -0.863],
], dtype=dtype).requires_grad_()

# use bond length to assess optimal geometry as they are rotation invariant
def bond_length(h2o):
# Get the bond lengths of an h20 molecule
return torch.stack([(h2o[0] - h2o[1]).norm(), (h2o[0] - h2o[2]).norm()])

# check starting geometry is not optimal
assert not torch.allclose(bond_length(h2o_init), bond_length(pyscf_h2o_opt), rtol=2e-4)

# optimize geometry
system = h2o_qc.get_system()
new_system = system.make_copy(moldesc=(system.atomzs, system.atompos))
new_qc = h2o_qc.__class__(new_system).run()
h2o_opt = optimal_geometry(new_qc)

assert torch.allclose(bond_length(h2o_opt), bond_length(pyscf_h2o_opt), rtol=2e-4)
25 changes: 25 additions & 0 deletions dqc/test/test_system.py
Original file line number Diff line number Diff line change
Expand Up @@ -127,6 +127,18 @@ def test_mol_cache():
if os.path.exists(cache_fname):
os.remove(cache_fname)

def test_mol_copy():
# test if copy is computed correctly
moldesc = "H 0 0 0; H 1 0 0"
mol = Mol(moldesc, basis="3-21G")

mol_copy = mol.make_copy()
assert torch.allclose(mol_copy.atompos, mol.atompos)

new_pos = torch.tensor([[0.0, 0.0, 0.01], [1.01, 0.0, 0.0]], dtype=dtype)
mol_copy_2 = mol.make_copy(moldesc=(mol.atomzs, new_pos))
assert torch.allclose(mol_copy_2.atompos, new_pos)

def test_sol_cache():

# test if cache is stored correctly
Expand Down Expand Up @@ -168,6 +180,19 @@ def test_sol_cache():
j2c1 = h1.df.j2c
assert torch.allclose(j2c, j2c1)

def test_sol_copy():
# test if copy is computed correctly
soldesc = "H 0 0 0"
a = torch.tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]], dtype=dtype) * 3
sol = Sol(soldesc, alattice=a, basis="3-21G")

sol_copy = sol.make_copy()
assert torch.allclose(sol_copy.atompos, sol.atompos)

new_pos = torch.tensor([[0.0, 0.0, 0.01]], dtype=dtype)
sol_copy_2 = sol.make_copy(soldesc=(sol.atomzs, new_pos))
assert torch.allclose(sol_copy_2.atompos, new_pos)

##################### pbc #####################
def test_mol_pbc_nuclei_energy():
# test the calculation of ion-ion interaction energy (+ gradients w.r.t. pos)
Expand Down

0 comments on commit 0fe821f

Please sign in to comment.