🔭 NLP enthusiast and researcher with a focus on applying machine learning to real-world problems. Currently working on "Predicting Stock Prices Using Tweets," an ongoing research project at the University of Haifa.
🤝 I am currently mentoring Y-DATA students for the Intuit Counterfactuals project, the AI21 Labs Q&A project, and mentoring Baot's English and Hebrew Punctuation Model Project.
💬 I'm always eager to discuss NLP, machine learning, and data science topics. Ask me anything about my research and data science projects, or check out my repositories for more details.
🌱 In my free time, I enjoy experimenting with new technologies and sharing my knowledge with others through writing for publications such as Towards Data Science and lecturing
Data scientist & NLP researcher | ML enthusiast | Passionate about knowledge sharing and mentoring in the tech community
Pinned Loading
-
Predictive-Modeling-TA--Fraud-case-study
Predictive-Modeling-TA--Fraud-case-study PublicFull implementation of data science pipeline on unbalanced data.
Jupyter Notebook 3
-
Machine-Learning-Tutorials
Machine-Learning-Tutorials PublicTutorials I assembled as a Machine Learning teaching assistant for master students
Jupyter Notebook 3
-
SpreadingKnowledge
SpreadingKnowledge PublicDatasets, notebooks and slides for workshops, tutorials and public speaking.
10 contributions in the last year
Day of Week | April Apr | May May | June Jun | July Jul | August Aug | September Sep | October Oct | November Nov | December Dec | January Jan | February Feb | March Mar | April Apr | ||||||||||||||||||||||||||||||||||||||||
Sunday Sun | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Monday Mon | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Tuesday Tue | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Wednesday Wed | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Thursday Thu | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Friday Fri | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Saturday Sat |
Less
No contributions.
Low contributions.
Medium-low contributions.
Medium-high contributions.
High contributions.
More