forked from tianweiy/CenterPoint
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
fix doc typos, a new nuscenes model with 1 nds better result
- Loading branch information
Showing
9 changed files
with
273 additions
and
22 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
232 changes: 232 additions & 0 deletions
232
configs/nusc/voxelnet/nusc_centerpoint_voxelnet_0075voxel_fix_bn_z.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,232 @@ | ||
import itertools | ||
import logging | ||
|
||
from det3d.utils.config_tool import get_downsample_factor | ||
|
||
tasks = [ | ||
dict(num_class=1, class_names=["car"]), | ||
dict(num_class=2, class_names=["truck", "construction_vehicle"]), | ||
dict(num_class=2, class_names=["bus", "trailer"]), | ||
dict(num_class=1, class_names=["barrier"]), | ||
dict(num_class=2, class_names=["motorcycle", "bicycle"]), | ||
dict(num_class=2, class_names=["pedestrian", "traffic_cone"]), | ||
] | ||
|
||
class_names = list(itertools.chain(*[t["class_names"] for t in tasks])) | ||
|
||
# training and testing settings | ||
target_assigner = dict( | ||
tasks=tasks, | ||
) | ||
|
||
# model settings | ||
model = dict( | ||
type="VoxelNet", | ||
pretrained=None, | ||
reader=dict( | ||
type="VoxelFeatureExtractorV3", | ||
# type='SimpleVoxel', | ||
num_input_features=5, | ||
), | ||
backbone=dict( | ||
type="SpMiddleResNetFHD", num_input_features=5, ds_factor=8 | ||
), | ||
neck=dict( | ||
type="RPN", | ||
layer_nums=[5, 5], | ||
ds_layer_strides=[1, 2], | ||
ds_num_filters=[128, 256], | ||
us_layer_strides=[1, 2], | ||
us_num_filters=[256, 256], | ||
num_input_features=256, | ||
logger=logging.getLogger("RPN"), | ||
), | ||
bbox_head=dict( | ||
type="CenterHead", | ||
in_channels=sum([256, 256]), | ||
tasks=tasks, | ||
dataset='nuscenes', | ||
weight=0.25, | ||
code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2, 1.0, 1.0], | ||
common_heads={'reg': (2, 2), 'height': (1, 2), 'dim':(3, 2), 'rot':(2, 2), 'vel': (2, 2)}, | ||
share_conv_channel=64, | ||
dcn_head=False | ||
), | ||
) | ||
|
||
assigner = dict( | ||
target_assigner=target_assigner, | ||
out_size_factor=get_downsample_factor(model), | ||
dense_reg=1, | ||
gaussian_overlap=0.1, | ||
max_objs=500, | ||
min_radius=2, | ||
) | ||
|
||
|
||
train_cfg = dict(assigner=assigner) | ||
|
||
test_cfg = dict( | ||
post_center_limit_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0], | ||
max_per_img=500, | ||
nms=dict( | ||
use_rotate_nms=True, | ||
use_multi_class_nms=False, | ||
nms_pre_max_size=1000, | ||
nms_post_max_size=83, | ||
nms_iou_threshold=0.2, | ||
), | ||
score_threshold=0.1, | ||
pc_range=[-54, -54], | ||
out_size_factor=get_downsample_factor(model), | ||
voxel_size=[0.075, 0.075] | ||
) | ||
|
||
# dataset settings | ||
dataset_type = "NuScenesDataset" | ||
nsweeps = 10 | ||
data_root = "data/nuScenes" | ||
|
||
db_sampler = dict( | ||
type="GT-AUG", | ||
enable=False, | ||
db_info_path="data/nuScenes/dbinfos_train_10sweeps_withvelo.pkl", | ||
sample_groups=[ | ||
dict(car=2), | ||
dict(truck=3), | ||
dict(construction_vehicle=7), | ||
dict(bus=4), | ||
dict(trailer=6), | ||
dict(barrier=2), | ||
dict(motorcycle=6), | ||
dict(bicycle=6), | ||
dict(pedestrian=2), | ||
dict(traffic_cone=2), | ||
], | ||
db_prep_steps=[ | ||
dict( | ||
filter_by_min_num_points=dict( | ||
car=5, | ||
truck=5, | ||
bus=5, | ||
trailer=5, | ||
construction_vehicle=5, | ||
traffic_cone=5, | ||
barrier=5, | ||
motorcycle=5, | ||
bicycle=5, | ||
pedestrian=5, | ||
) | ||
), | ||
dict(filter_by_difficulty=[-1],), | ||
], | ||
global_random_rotation_range_per_object=[0, 0], | ||
rate=1.0, | ||
) | ||
train_preprocessor = dict( | ||
mode="train", | ||
shuffle_points=True, | ||
global_rot_noise=[-0.78539816, 0.78539816], | ||
global_scale_noise=[0.95, 1.05], | ||
global_translate_std=0.5, | ||
db_sampler=db_sampler, | ||
class_names=class_names, | ||
) | ||
|
||
val_preprocessor = dict( | ||
mode="val", | ||
shuffle_points=False, | ||
) | ||
|
||
voxel_generator = dict( | ||
range=[-54, -54, -5.0, 54, 54, 3.0], | ||
voxel_size=[0.075, 0.075, 0.2], | ||
max_points_in_voxel=10, | ||
max_voxel_num=[120000, 160000], | ||
) | ||
|
||
train_pipeline = [ | ||
dict(type="LoadPointCloudFromFile", dataset=dataset_type), | ||
dict(type="LoadPointCloudAnnotations", with_bbox=True), | ||
dict(type="Preprocess", cfg=train_preprocessor), | ||
dict(type="Voxelization", cfg=voxel_generator), | ||
dict(type="AssignLabel", cfg=train_cfg["assigner"]), | ||
dict(type="Reformat"), | ||
# dict(type='PointCloudCollect', keys=['points', 'voxels', 'annotations', 'calib']), | ||
] | ||
test_pipeline = [ | ||
dict(type="LoadPointCloudFromFile", dataset=dataset_type), | ||
dict(type="LoadPointCloudAnnotations", with_bbox=True), | ||
dict(type="Preprocess", cfg=val_preprocessor), | ||
dict(type="Voxelization", cfg=voxel_generator), | ||
dict(type="AssignLabel", cfg=train_cfg["assigner"]), | ||
dict(type="Reformat"), | ||
] | ||
|
||
train_anno = "data/nuScenes/infos_train_10sweeps_withvelo_filter_True.pkl" | ||
val_anno = "data/nuScenes/infos_val_10sweeps_withvelo_filter_True.pkl" | ||
test_anno = None | ||
|
||
data = dict( | ||
samples_per_gpu=4, | ||
workers_per_gpu=6, | ||
train=dict( | ||
type=dataset_type, | ||
root_path=data_root, | ||
info_path=train_anno, | ||
ann_file=train_anno, | ||
nsweeps=nsweeps, | ||
class_names=class_names, | ||
pipeline=train_pipeline, | ||
), | ||
val=dict( | ||
type=dataset_type, | ||
root_path=data_root, | ||
info_path=val_anno, | ||
test_mode=True, | ||
ann_file=val_anno, | ||
nsweeps=nsweeps, | ||
class_names=class_names, | ||
pipeline=test_pipeline, | ||
), | ||
test=dict( | ||
type=dataset_type, | ||
root_path=data_root, | ||
info_path=test_anno, | ||
ann_file=test_anno, | ||
nsweeps=nsweeps, | ||
class_names=class_names, | ||
pipeline=test_pipeline, | ||
), | ||
) | ||
|
||
|
||
|
||
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) | ||
# optimizer | ||
optimizer = dict( | ||
type="adam", amsgrad=0.0, wd=0.01, fixed_wd=True, moving_average=False, | ||
) | ||
lr_config = dict( | ||
type="one_cycle", lr_max=0.001, moms=[0.95, 0.85], div_factor=10.0, pct_start=0.4, | ||
) | ||
|
||
checkpoint_config = dict(interval=1) | ||
# yapf:disable | ||
log_config = dict( | ||
interval=5, | ||
hooks=[ | ||
dict(type="TextLoggerHook"), | ||
# dict(type='TensorboardLoggerHook') | ||
], | ||
) | ||
# yapf:enable | ||
# runtime settings | ||
total_epochs = 20 | ||
device_ids = range(8) | ||
dist_params = dict(backend="nccl", init_method="env://") | ||
log_level = "INFO" | ||
work_dir = './work_dirs/{}/'.format(__file__[__file__.rfind('/') + 1:-3]) | ||
load_from = None | ||
resume_from = None | ||
workflow = [('train', 1)] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.