forked from xmu-xiaoma666/External-Attention-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
7ef9bb8
commit 73de5ef
Showing
1 changed file
with
57 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,57 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
class h_sigmoid(nn.Module): | ||
def __init__(self, inplace=True): | ||
super(h_sigmoid, self).__init__() | ||
self.relu = nn.ReLU6(inplace=inplace) | ||
|
||
def forward(self, x): | ||
return self.relu(x + 3) / 6 | ||
|
||
class h_swish(nn.Module): | ||
def __init__(self, inplace=True): | ||
super(h_swish, self).__init__() | ||
self.sigmoid = h_sigmoid(inplace=inplace) | ||
|
||
def forward(self, x): | ||
return x * self.sigmoid(x) | ||
|
||
class CoordAtt(nn.Module): | ||
def __init__(self, inp, oup, reduction=32): | ||
super(CoordAtt, self).__init__() | ||
self.pool_h = nn.AdaptiveAvgPool2d((None, 1)) | ||
self.pool_w = nn.AdaptiveAvgPool2d((1, None)) | ||
|
||
mip = max(8, inp // reduction) | ||
|
||
self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0) | ||
self.bn1 = nn.BatchNorm2d(mip) | ||
self.act = h_swish() | ||
|
||
self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0) | ||
self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0) | ||
|
||
|
||
def forward(self, x): | ||
identity = x | ||
|
||
n,c,h,w = x.size() | ||
x_h = self.pool_h(x) | ||
x_w = self.pool_w(x).permute(0, 1, 3, 2) | ||
|
||
y = torch.cat([x_h, x_w], dim=2) | ||
y = self.conv1(y) | ||
y = self.bn1(y) | ||
y = self.act(y) | ||
|
||
x_h, x_w = torch.split(y, [h, w], dim=2) | ||
x_w = x_w.permute(0, 1, 3, 2) | ||
|
||
a_h = self.conv_h(x_h).sigmoid() | ||
a_w = self.conv_w(x_w).sigmoid() | ||
|
||
out = identity * a_w * a_h | ||
|
||
return out |