Skip to content
/ UDIS2 Public
forked from nie-lang/UDIS2

ICCV2023 - Parallax-Tolerant Unsupervised Deep Image Stitching (UDIS++)

License

Notifications You must be signed in to change notification settings

dzp62442/UDIS2

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

83 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

1 环境配置

conda create -n udis python=3.8
conda activate udis
pip install torch==1.10.1+cu113 torchvision==0.11.2+cu113 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu113/torch_stable.html
pip install -r requirements.txt  # 指定numpy版本,不能超过1.20

2 Warp

2.1 训练

设置 Warp/Codes/train.py 中的训练数据集路径

python train.py

2.2 测试

2.2.1 计算 PSNR/SSIM

设置 Warp/Codes/test.py 中的测试数据集路径

python test.py --gpu 0

2.2.2 Generate the warped images and corresponding masks

设置 Warp/Codes/test_output.py 中的训练/测试数据集路径

python test_output.py --gpu 0

变形后的图像、变形后图像掩码、平均融合结果均会保存在数据集路径下

2.2.3 Test on other datasets

当在不同场景和分辨率的其他数据集上进行测试时,应用迭代扭曲适应来微调预训练模型,获得更好的对齐性能。设置 Warp/Codes/test_other.py 中的 path/img1_namepath/img2_name,默认情况下,img1img2 都放在 path

python test_other.py --gpu 0

微调前后的结果保存在 path


Parallax-Tolerant Unsupervised Deep Image Stitching (UDIS++ paper)

Lang Nie*, Chunyu Lin*, Kang Liao*, Shuaicheng Liu`, Yao Zhao*

* Institute of Information Science, Beijing Jiaotong University

` School of Information and Communication Engineering, University of Electronic Science and Technology of China

image

Dataset (UDIS-D)

We use the UDIS-D dataset to train and evaluate our method. Please refer to UDIS for more details about this dataset.

Code

Requirement

  • numpy 1.19.5
  • pytorch 1.7.1
  • scikit-image 0.15.0
  • tensorboard 2.9.0

We implement this work with Ubuntu, 3090Ti, and CUDA11. Refer to environment.yml for more details.

How to run it

Similar to UDIS, we also implement this solution in two stages:

Meta

If you have any questions about this project, please feel free to drop me an email.

NIE Lang -- [email protected]

@inproceedings{nie2023parallax,
  title={Parallax-Tolerant Unsupervised Deep Image Stitching},
  author={Nie, Lang and Lin, Chunyu and Liao, Kang and Liu, Shuaicheng and Zhao, Yao},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={7399--7408},
  year={2023}
}

References

[1] L. Nie, C. Lin, K. Liao, M. Liu, and Y. Zhao, “A view-free image stitching network based on global homography,” Journal of Visual Communication and Image Representation, p. 102950, 2020.
[2] L. Nie, C. Lin, K. Liao, and Y. Zhao. Learning edge-preserved image stitching from multi-scale deep homography[J]. Neurocomputing, 2022, 491: 533-543.
[3] L. Nie, C. Lin, K. Liao, S. Liu, and Y. Zhao. Unsupervised deep image stitching: Reconstructing stitched features to images[J]. IEEE Transactions on Image Processing, 2021, 30: 6184-6197.
[4] L. Nie, C. Lin, K. Liao, S. Liu, and Y. Zhao. Deep rectangling for image stitching: a learning baseline[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 5740-5748.

About

ICCV2023 - Parallax-Tolerant Unsupervised Deep Image Stitching (UDIS++)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%