Ting-I Hsieh�, Esther Robb�, Hwann-Tzong Chen, Jia-Bin Huang
This project is a pytorch implementation of DropLoss for Long-Tail Instance Segmentation. A majority of the code is modified from facebookresearch/detectron2 and tztztztztz/eql.detectron2.
- Training code.
- Evaluation code.
- LVIS v1.0 datasets.
- Provide checkpoint model.
- Linux or macOS with Python = 3.7
- PyTorch = 1.4 and torchvision that matches the PyTorch installation. Install them together at pytorch.org to make sure of this
- OpenCV is optional but needed by demo and visualization
gcc & g++ ≥ 5 are required. ninja is recommended for faster build. After having them, run:
python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
# (add --user if you don't have permission)
# Or, to install it from a local clone:
git clone https://github.com/facebookresearch/detectron2.git
python -m pip install -e detectron2
# Or if you are on macOS
CC=clang CXX=clang++ ARCHFLAGS="-arch x86_64" python -m pip install ......
Please remove the latest fvcore package and install older version. run:
pip uninstall fvcore
pip install fvcore==0.1.1.post200513
Following the instruction of README.md to set up the lvis dataset.
To train a model with 8 GPUs run:
cd /path/to/detectron2/projects/DropLoss
python train_net.py --config-file configs/droploss_mask_rcnn_R_50_FPN_1x.yaml --num-gpus 8
Model evaluation can be done similarly:
cd /path/to/detectron2/projects/DropLoss
python train_net.py --config-file configs/droploss_mask_rcnn_R_50_FPN_1x.yaml --eval-only MODEL.WEIGHTS /path/to/model_checkpoint
If you use DropLoss, please use the following BibTeX entry.
Coming soon