Skip to content

Commit

Permalink
Merge pull request projectmesa#393 from rht/dict_params_fix
Browse files Browse the repository at this point in the history
Split parameter_values into fixed & variable parameters in batchrunner
  • Loading branch information
dmasad authored Jul 9, 2017
2 parents 5a3a62c + 364ad70 commit fa50736
Show file tree
Hide file tree
Showing 8 changed files with 483 additions and 391 deletions.
138 changes: 68 additions & 70 deletions docs/tutorials/intro_tutorial.ipynb

Large diffs are not rendered by default.

28 changes: 14 additions & 14 deletions docs/tutorials/intro_tutorial.rst
Original file line number Diff line number Diff line change
Expand Up @@ -804,16 +804,15 @@ indefinitely in ``__init__``.
self.running = True
# ...
We instantiate a BatchRunner with a model class to run, and a dictionary
mapping parameters to values for them to take. If any of these
parameters are assigned more than one value, as a list or an iterator,
the BatchRunner will know to run all the combinations of these values
and the other ones. The BatchRunner also takes an argument for how many
model instantiations to create and run at each combination of parameter
values, and how many steps to run each instantiation for. Finally, like
the DataCollector, it takes dictionaries of model- and agent-level
reporters to collect. Unlike the DataCollector, it won't collect the
data every step of the model, but only at the end of each run.
We instantiate a BatchRunner with a model class to run, and two dictionaries:
one of the fixed parameters (mapping model arguments to values) and one of
varying parameters (mapping each parameter name to a sequence of values for it
to take). The BatchRunner also takes an argument for how many model
instantiations to create and run at each combination of parameter values, and
how many steps to run each instantiation for. Finally, like the DataCollector,
it takes dictionaries of model- and agent-level reporters to collect. Unlike
the DataCollector, it won't collect the data every step of the model, but only
at the end of each run.

In the following example, we hold the height and width fixed, and vary
the number of agents. We tell the BatchRunner to run 5 instantiations of
Expand All @@ -827,12 +826,13 @@ Now, we can set up and run the BatchRunner:
# run.py
from mesa.batchrunner import BatchRunner
parameters = {"width": 10,
"height": 10,
"N": range(10, 500, 10)}
fixed_params = {"width": 10,
"height": 10}
variable_params = {"N": range(10, 500, 10)}
batch_run = BatchRunner(MoneyModel,
parameters,
fixed_parameters=fixed_params,
variable_parameters=variable_params,
iterations=5,
max_steps=100,
model_reporters={"Gini": compute_gini})
Expand Down
196 changes: 110 additions & 86 deletions examples/Schelling/analysis.ipynb

Large diffs are not rendered by default.

195 changes: 82 additions & 113 deletions examples/forest_fire/Forest Fire Model.ipynb

Large diffs are not rendered by default.

155 changes: 94 additions & 61 deletions mesa/batchrunner.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,11 +6,33 @@
A single class to manage a batch run or parameter sweep of a given model.
"""
from itertools import product
import collections
import copy
from itertools import product, count
import pandas as pd
from tqdm import tqdm


def combinations(*items):
"""
A small fix to handle dictionary type parameters in cartesian product.
"""
prepared = [(item,) if isinstance(item, collections.Mapping) else item
for item in items]
yield from (param for param in product(*prepared))


class VariableParameterError(TypeError):
MESSAGE = ('variable_parameters must map a name to a sequence of values. '
'These parameters were given with non-sequence values: {}')

def __init__(self, bad_names):
self.bad_names = bad_names

def __str__(self):
return self.MESSAGE.format(self.bad_names)


class BatchRunner:
""" This class is instantiated with a model class, and model parameters
associated with one or more values. It is also instantiated with model and
Expand All @@ -23,19 +45,26 @@ class BatchRunner:
entire DataCollector object.
"""
def __init__(self, model_cls, parameter_values, iterations=1,
max_steps=1000, model_reporters=None, agent_reporters=None,
display_progress=True):
def __init__(self, model_cls, variable_parameters=None,
fixed_parameters=None, iterations=1, max_steps=1000,
model_reporters=None, agent_reporters=None, display_progress=True):
""" Create a new BatchRunner for a given model with the given
parameters.
Args:
model_cls: The class of model to batch-run.
parameter_values: Dictionary of parameters to their values or
ranges of values. For example:
variable_parameters: Dictionary of parameters to lists of values.
The model will be run with every combination of these paramters.
For example, given variable_parameters of
{"param_1": range(5),
"param_2": [1, 5, 10],
"const_param": 100}
"param_2": [1, 5, 10]}
models will be run with {param_1=1, param_2=1},
{param_1=2, param_2=1}, ..., {param_1=4, param_2=10}.
fixed_parameters: Dictionary of parameters that stay same through
all batch runs. For example, given fixed_parameters of
{"constant_parameter": 3},
every instantiated model will be passed constant_parameter=3
as a kwarg.
iterations: The total number of times to run the model for each
combination of parameters.
max_steps: The upper limit of steps above which each run will be halted
Expand All @@ -51,8 +80,8 @@ def __init__(self, model_cls, parameter_values, iterations=1,
"""
self.model_cls = model_cls
self.parameter_values = {param: self.make_iterable(vals)
for param, vals in parameter_values.items()}
self.variable_parameters = self._process_parameters(variable_parameters)
self.fixed_parameters = fixed_parameters or {}
self.iterations = iterations
self.max_steps = max_steps

Expand All @@ -67,36 +96,42 @@ def __init__(self, model_cls, parameter_values, iterations=1,

self.display_progress = display_progress

def _process_parameters(self, params):
params = copy.deepcopy(params)
bad_names = []
for name, values in params.items():
if (isinstance(values, str) or
not hasattr(values, "__iter__")):
bad_names.append(name)
if bad_names:
raise VariableParameterError(bad_names)
return params

def run_all(self):
""" Run the model at all parameter combinations and store results. """
params = self.parameter_values.keys()
param_ranges = self.parameter_values.values()
run_count = 0

if self.display_progress:
pbar = tqdm(total=len(list(product(*param_ranges))) * self.iterations)

for param_values in list(product(*param_ranges)):
kwargs = dict(zip(params, param_values))
for _ in range(self.iterations):
param_names, param_ranges = zip(*self.variable_parameters.items())
run_count = count()
total_iterations = self.iterations
for param_range in param_ranges:
total_iterations *= len(param_range)
with tqdm(total_iterations, disable=not self.display_progress) as pbar:
for param_values in product(*param_ranges):
kwargs = dict(zip(param_names, param_values))
kwargs.update(self.fixed_parameters)
model = self.model_cls(**kwargs)
self.run_model(model)
# Collect and store results:
if self.model_reporters:
key = tuple(list(param_values) + [run_count])
self.model_vars[key] = self.collect_model_vars(model)
if self.agent_reporters:
agent_vars = self.collect_agent_vars(model)
for agent_id, reports in agent_vars.items():
key = tuple(list(param_values) + [run_count, agent_id])
self.agent_vars[key] = reports
if self.display_progress:
pbar.update()

run_count += 1

if self.display_progress:
pbar.close()
for _ in range(self.iterations):
self.run_model(model)
# Collect and store results:
model_key = param_values + (next(run_count),)
if self.model_reporters:
self.model_vars[model_key] = self.collect_model_vars(model)
if self.agent_reporters:
agent_vars = self.collect_agent_vars(model)
for agent_id, reports in agent_vars.items():
agent_key = model_key + (agent_id,)
self.agent_vars[agent_key] = reports
pbar.update()

def run_model(self, model):
""" Run a model object to completion, or until reaching max steps.
Expand Down Expand Up @@ -126,38 +161,36 @@ def collect_agent_vars(self, model):
return agent_vars

def get_model_vars_dataframe(self):
""" Generate a pandas DataFrame from the model-level variables collected.
""" Generate a pandas DataFrame from the model-level variables
collected.
"""
index_col_names = list(self.parameter_values.keys())
index_col_names.append("Run")
records = []
for key, val in self.model_vars.items():
record = dict(zip(index_col_names, key))
for k, v in val.items():
record[k] = v
records.append(record)
return pd.DataFrame(records)
return self._prepare_report_table(self.model_vars)

def get_agent_vars_dataframe(self):
""" Generate a pandas DataFrame from the agent-level variables
collected.
"""
index_col_names = list(self.parameter_values.keys())
index_col_names += ["Run", "AgentID"]
return self._prepare_report_table(self.agent_vars,
extra_cols=['AgentId'])

def _prepare_report_table(self, vars_dict, extra_cols=None):
"""
Creates a dataframe from collected records and sorts it using 'Run'
column as a key.
"""
extra_cols = ['Run'] + (extra_cols or [])
index_cols = list(self.variable_parameters.keys()) + extra_cols

records = []
for key, val in self.agent_vars.items():
record = dict(zip(index_col_names, key))
for k, v in val.items():
record[k] = v
for param_key, values in vars_dict.items():
record = dict(zip(index_cols, param_key))
record.update(values)
records.append(record)
return pd.DataFrame(records)

@staticmethod
def make_iterable(val):
""" Helper method to ensure a value is a non-string iterable. """
if hasattr(val, "__iter__") and not isinstance(val, str):
return val
else:
return [val]

df = pd.DataFrame(records)
rest_cols = set(df.columns) - set(index_cols)
ordered = df[index_cols + list(sorted(rest_cols))]
ordered.sort_values(by='Run', inplace=True)
return ordered
4 changes: 2 additions & 2 deletions mesa/time.py
Original file line number Diff line number Diff line change
Expand Up @@ -139,7 +139,7 @@ class StagedActivation(BaseScheduler):
shuffle_between_stages = False
stage_time = 1

def __init__(self, model, stage_list=["step"], shuffle=False,
def __init__(self, model, stage_list=None, shuffle=False,
shuffle_between_stages=False):
""" Create an empty Staged Activation schedule.
Expand All @@ -154,7 +154,7 @@ def __init__(self, model, stage_list=["step"], shuffle=False,
"""
super().__init__(model)
self.stage_list = stage_list
self.stage_list = stage_list or ["step"]
self.shuffle = shuffle
self.shuffle_between_stages = shuffle_between_stages
self.stage_time = 1 / len(self.stage_list)
Expand Down
Loading

0 comments on commit fa50736

Please sign in to comment.