Skip to content

Training SSD model on Kaist Pedestrian multispectral dataset

License

Notifications You must be signed in to change notification settings

epsilon-deltta/ssd_guillotine

Repository files navigation

ssd guillotine project

SSD[2] (Object detection Model) Implementation on Kaist pedestrian multispectral dataset[1]

Goal

  • To understand SSD model
  • To apply SSD model to Kaist Pedestrain dataset.

Run Now !

Open In Colab

Architecture

fig 01

DataAugmentation/Transforming Method

  • phtometric disortation(randomly adjusts 4-disortation methods(Brightness,contrast,saturation,Hue) with a 50% chance)
    • Brightness , contrast,saturation : [0.5, 1.5] (random distribution : Uniform)
  • Zoom out (with 50% chance of occurrence)
  • Crop the image (50%)
  • Flip (50%)

Data Preprocessing

Resize Normalization

train

initialization

  • baseline0 initialized with pretrained SSD weights (pre-trained on VOC dataset)
    SSD300 trained on VOC
  • baseline1 You can download here

parameter

optimizer : SGD(lr=0.001)
loss : MultiBoxLoss (same as original paper[2])

=======

Todo (default)

  • Make kaist dataset be small size (for working on colab)
  • split(train,val,test)
    • tr,val, test (155, 52, 69)
  • Dataset&DataLoader
  • SSD model
  • train

NEXT

  • diverse optimizers; AdamP[3], Madgrad[4]
  • augmentation in object detection
  • Few shot learning in small dataset
  • Continual Learning (cl)
    • problem : Catastrophic Forgetting , Semantic Draft
    • Categorization of CL Approach
  1. Regularization
  • EWC (Elastic Weight Consolidation)[7]
  1. Structure
  • Progressive Networks[8]
  1. Memory
  • DGR (Deep Generative Replay)[9]
  1. Mixed above
  • Dynamically Expandable Network[10]

😁 when i have a time, I wanna think of this topic deeply.

  • the ways of solving Class Imbalance problems (In this paper , used Hard Negative method for solving this problem)
    • Online Hard Example Mining [6]
    • Focal loss[5]

ETC

kaist dataset[1]

origin : https://soonminhwang.github.io/rgbt-ped-detection/
download : https://gofile.me/4ce0I/uRhsZ8nnF

kaist dataset annotation

github : https://github.com/luzhang16/AR-CNN
download : https://drive.google.com/open?id=1FLkoJQOGt4PqRtr0j6namAaehrdt_A45

ssd baseline code

baseline0 : https://github.com/amdegroot/ssd.pytorch/tree/5b0b77faa955c1917b0c710d770739ba8fbff9b7 (it has many bugs)
baseline1 : https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Object-Detection

tools (related to Object detection )

object detection framework : https://github.com/open-mmlab/mmdetection

#reference

  • [1] S. Hwang, J. Park, N. Kim, Y. Choi, and I. S. Kweon, “Multispectral Pedestrian Detection: Benchmark Dataset and Baseline.” Accessed: May 07, 2021. [Online]. Available: http://rcv.kaist.ac.kr/multispectral-pedestrian/.
  • [2] W. Liu et al., “SSD: Single Shot MultiBox Detector.” Accessed: May 07, 2021. [Online]. Available: https://github.com/weiliu89/caffe/tree/ssd.
  • [3] B. Heo et al., “ADAMP: SLOWING DOWN THE SLOWDOWN FOR MO-MENTUM OPTIMIZERS ON SCALE-INVARIANT WEIGHTS Equal contribution * , Works done at Naver AI Lab †.” Accessed: May 07, 2021. [Online]. Available: https://github.com/clovaai/adamp.
  • [4] A. Defazio and S. Jelassi, “Adaptivity without Compromise: A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization,” pp. 1–31, 2021, [Online]. Available: http://arxiv.org/abs/2101.11075.
  • [5] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal Loss for Dense Object Detection.” Accessed: May 11, 2021. [Online]. Available: https://github.com/facebookresearch/Detectron.
  • [6] A. Shrivastava, A. Gupta, and R. Girshick, “Training Region-based Object Detectors with Online Hard Example Mining.”
  • [7] J. Kirkpatrick et al., “Overcoming catastrophic forgetting in neural networks,” Proc. Natl. Acad. Sci. U. S. A., vol. 114, no. 13, pp. 3521–3526, Mar. 2017, doi: 10.1073/pnas.1611835114.
  • [8] A. A. Rusu et al., “Progressive Neural Networks,” Jun. 2016, Accessed: May 15, 2021. [Online]. Available: http://arxiv.org/abs/1606.04671.
  • [9] H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual Learning with Deep Generative Replay,” Adv. Neural Inf. Process. Syst., vol. 2017-December, pp. 2991–3000, May 2017, Accessed: May 15, 2021. [Online]. Available: http://arxiv.org/abs/1705.08690.
  • [10] J. Yoon, E. Yang, J. Lee, and S. J. Hwang, “Lifelong Learning with Dynamically Expandable Networks,” arXiv, Aug. 2017, Accessed: May 15, 2021. [Online]. Available: http://arxiv.org/abs/1708.01547.

About

Training SSD model on Kaist Pedestrian multispectral dataset

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published