This project provides representative performance measures across a wide field of web
application frameworks. With much help from the community, coverage is quite broad and
we are happy to broaden it further with contributions. The project presently includes
frameworks on many languages including Go
, Python
, Java
, Ruby
, PHP
, Clojure
,
Groovy
, JavaScript
, Erlang
, Haskell
, Scala
, Lua
, C
, and others. The
current tests exercise plaintext responses, JSON seralization, database reads
and writes via the object-relational mapper (ORM), collections, sorting, server-side templates,
and XSS counter-measures. Future tests will exercise other components and greater computation.
Read more and see the results of our tests on Amazon EC2 and physical hardware. For descriptions of the test types that we run, see the test requirements section.
Join in the conversation at our
Google Group,
or chat with us on Freenode at #techempower-fwbm
.
If you plan to add a new framework or update an existing framework, you only need to run in verify mode. This will launch the framework, query all URLs, and verify that returned data matches the benchmark requirements.
If verify mode is all you need, you can potentially develop without ever running our
codebase locally - our Travis-CI.org setup
can run the verification for you. This is as simple as going to travis-ci.org, using the
Log in with Github
button, and enabling Travis-CI for your fork. All commit pushes
will be automatically verified by Travis-CI, and you will get full log output.
You can submit a pull request when your code passes the Travis-CI verification and have
confidence it will be merged quickly.
While this development route it slightly slower than standard local development, it does not
require any local setup process.
You can also run verify mode on a single computer, although you should be comfortable with us
installing multiple large software suites.
You will need to enable passwordless SSH access to localhost (google for help), and you will also
need to enable passwordless sudo (google for help)
Once you have cloned our repository, run toolset/run-tests.py --help
for detailed
help on running in verify mode and see the sections below for more guidance.
If you plan to run the benchmark and compare results, you need to run in benchmark
mode. We recommend having a minimum of three distinct computers with a fast network
connection in between, all of which you should be comfortable installing a large amount
of additional software on. One of these computers (the app server
) must have passwordless
SSH access to the other two (google
for
help), and on every computer
you will need to have passwordless sudo access (google for help).
Once you have cloned our repository, run toolset/run-tests.py --help
for detailed
help on running in benchmark mode and see the sections below for more guidance.
If you are not an expert, please ensure your setup can run in verify mode before attempting to run in benchmark mode.
Running the full benchmark requires at least three computers:
app server
: The computer that your framework will be launched onload server
: The computer that will generate client load. Akaclient machine
DB server
: The computer that runs all the databases
This codebase (aka TechEmpower/FrameworkBenchmarks
aka TFB
) must be run on
the app server
. The codebase contains a number of framework directories
, each
of which contains one or more framework tests
. While our current setup has
many directories, we are working to consolidate related code into fewer directories
with more tests per directory.
When run, TFB
will:
- select which framework tests are to be run based on passed arguments
- install the necessary software (both on the
app server
and other servers) - launch the framework
- access the urls listed in the requirements and verify the responses
- launch the load generation software on the
load server
- gather the results
- halt the framework
If you choose to run TFB on your own computer, you will need to install
passwordless SSH to your load server
and your database server
from
your app server
. You will also need to enable passwordless sudo access
on all three servers. If you are only planning to use verify mode, then
all three servers can be the same computer, and you will need to ensure
you have passwordless sudo access to localhost
.
We run all tests on Ubuntu 14.04, so it is recommended you use this for development or use.
TFB takes a large number of command line flags, and it can become tedious to
specify them repeatedly. We recommend you create a benchmark.cfg
file by
copying the example benchmark.cfg.example
file and modifying as needed.
See toolset/run-tests.py --help
for a description of each flag.
For running in verify mode, you can set the various hosts to localhost
.
For running in benchmark mode, you will need the public IP addresses.
Note: environment variables can also be used for a number of the arguments
After you have a configuration file, run the following to setup your
various servers. We use the --install-only
flag in our examples to
prevent launching tests at this stage.
Setting up the load server
toolset/run-tests.py --install client --verbose --install-only
Setting up the database server
toolset/run-tests.py --install database --verbose --install-only
# We are still working to automate MongoDO. Until this, please run
# this as well (replacing database-ip with your own value)
mongo --host database-ip < config/create.js
Setting up the app server
You can choose to selectively install components by using the
--test
and --exclude
flags.
# Install just the software for beego
toolset/run-tests.py --install server --test beego --verbose --install-only
# Install all php software but php-fuel
toolset/run-tests.py --install server --test php* --exclude php-fuel --verbose --install-only
# Install *all* framework software. Expect this to take hours!
# If running on a remote server, use `screen` or `tmux` or `nohup` to
# prevent the installation from being terminated if you are disconnected
toolset/run-tests.py --install server --verbose --install-only
You can easily list all available tests
╰─$ toolset/run-tests.py --list-tests
activeweb
activeweb-raw
aspnet
aspnet-jsonnet
aspnet-mongodb-raw
aspnet-mono
aspnet-mono-jsonnet
aspnet-mono-mongodb-raw
<snip>
There are a number of options that can be specified:
# Run a verification for test beego
toolset/run-tests.py --test beego --mode verify
# Run the default benchmark for the beego test
toolset/run-tests.py --test beego
# Modify which test types are run during benchmark
toolset/run-tests.py --test beego --type json
toolset/run-tests.py --test beego --type db
toolset/run-tests.py --test beego --type fortune
# Modify a number of options for how the load is generated
toolset/run-tests.py --test beego --max-concurrency 24 --max-threads 24 --duration 20 --max-queries 200
# Run a tiny benchmark
toolset/run-tests.py --test beego --max-threads 2 --max-concurrency 2
Logs file locations use the format results/ec2/latest/logs/wt/err.txt
.
The general structure is results/<run name>/<timestamp>/logs/<test name>/<file>
You can use the --name
flag to change the <run name>
If you re-run the same test multiple times, you will get a different folder
for each <timestamp>
, although the latest
folder will be kept up to date.
The <test name>
is simply the test you ran, and <file>
is either out.txt
or err.txt
(these are the logout
and logerr
arguments passed into each
setup.py
file.
Note: If you're looking for logs from our official benchmark rounds, see Round 9 and Round 8
The community has consistently helped in making these tests better, and we welcome any and all changes. These guidelines prevent us from having to give repeated feedback on the same topics:
- Use specific versions: If you're updating any software or dependency, please be
specific with the version number. Also, update the appropriate
README
to reflect that change - Rope in experts: If you're making a performance tweak, our team may not be able to verify your code--we are not experts in every language. It's always helpful to ping expert users and provide a basic introduction on their credentials. If you are an expert that is willing to be pinged occasionally, please add yourself to the appropriate test README files.
- Use a personal Travis-CI account: This one is mainly for your own sanity. Our main Travis-CI can occasionally become clogged with so many pull requests that it takes a day to finish all the builds. If you create a fork and enable Travis-CI.org, you will get your own build queue. This means 1) only your commits/branches are being verified, so there is no delay waiting for an unrelated pull request, and 2) you can cancel unneeded items. This does not affect our own Travis-CI setup at all - any commits added to a pull request will be verifed as normal.
- Read the README: We know that's cliche. However, our toolset drags in a lot of
different concepts and frameworks, and it can really help to read the README's, such
as this one, the one inside the
toolset/
directory, and the ones inside specific framework directories
When adding a new framework or new test to an existing framework, please follow these steps:
- Update/add a benchmark_config
- Update/add a setup file
- Update/add an install.sh file
- (Optional) Update/add a bash_profile.sh file
- When creating a database test, use the table/collection
hello_world
. Our database setup scripts are stored inside theconfig/
folder if you need to see the database schema
The benchmark_config
file is used by our scripts to identify
available tests - it should exist at the root of the framework directory.
We
Here is an example benchmark_config
from the Compojure
framework.
There are two different tests listed for the Compojure
framework,
{
"framework": "compojure",
"tests": [{
"default": {
"setup_file": "setup",
"json_url": "/compojure/json",
"db_url": "/compojure/db/1",
"query_url": "/compojure/db/",
"fortune_url": "/compojure/fortune-hiccup",
"plaintext_url": "/compojure/plaintext",
"port": 8080,
"approach": "Realistic",
"classification": "Micro",
"database": "MySQL",
"framework": "compojure",
"language": "Clojure",
"orm": "Micro",
"platform": "Servlet",
"webserver": "Resin",
"os": "Linux",
"database_os": "Linux",
"display_name": "compojure",
"notes": "",
"versus": "servlet"
},
"raw": {
"setup_file": "setup",
"db_url": "/compojure/dbraw/1",
"query_url": "/compojure/dbraw/",
"port": 8080,
"approach": "Realistic",
"classification": "Micro",
"database": "MySQL",
"framework": "compojure",
"language": "Clojure",
"orm": "Raw",
"platform": "Servlet",
"webserver": "Resin",
"os": "Linux",
"database_os": "Linux",
"display_name": "compojure-raw",
"notes": "",
"versus": "servlet"
}
}]
}
framework:
Specifies the framework name.tests:
A list of tests that can be run for this framework. In many cases, this contains a single element for the "default" test, but additional tests can be specified. Each test name must be unique when concatenated with the framework name. Each test will be run separately in our Rounds, so it is to your benefit to provide multiple variations in case one works better in some casessetup_file:
The location of the python setup file that can start and stop the test, excluding the.py
ending. If your different tests require different setup approachs, use another setup file.json_url (optional):
The URI to the JSON test, typically/json
db_url (optional):
The URI to the database test, typically/db
query_url (optional):
The URI to the variable query test. The URI must be set up so that an integer can be applied to the end of the URI to specify the number of queries to run. For example,/query?queries=
(to yield/query?queries=20
) or/query/
(to yield/query/20
)fortune_url (optional):
the URI to the fortunes test, typically/fortune
update_url (optional):
the URI to the updates test, setup in a manner similar toquery_url
described above.plaintext_url (optional):
the URI of the plaintext test, typically/plaintext
port:
The port the server is listening onapproach (metadata):
Realistic
orStripped
(see here for a description of all metadata attributes)classification (metadata):
Full
,Micro
, orPlatform
database (metadata):
MySQL
,Postgres
,MongoDB
,SQLServer
, orNone
framework (metadata):
name of the frameworklanguage (metadata):
name of the languageorm (metadata):
Full
,Micro
, orRaw
platform (metadata):
name of the platformwebserver (metadata):
name of the web-server (also referred to as the "front-end server")os (metadata):
The application server's operating system,Linux
orWindows
database_os (metadata):
The database server's operating system,Linux
orWindows
display_name (metadata):
How to render this test permutation's name on the results web site. Some permutation names can be really long, so the display_name is provided in order to provide something more succinct.versus (optional):
The name of another test (elsewhere in this project) that is a subset of this framework. This allows for the generation of the framework efficiency chart in the results web site. For example, Compojure is compared to "servlet" since Compojure is built on the Servlets platform.
The requirements section here explains the expected response for each URL as well all metadata options available.
If your framework and platform can execute on both Windows and Linux, we encourage you to specify tests for both operating systems. This increases the amount of testing you should do before submitting your pull-request, however, so we understand if you start with just one of the two. Travis-CI cannot automatically verify Windows-based tests, and therefore you should verify your code manually.
The steps involved are:
- Assuming you have implemented the Linux test already, add a new test
permutation to your
benchmark_config
file for the Windows test. When the benchmark script runs on Linux, it skips tests whereos
inWindows
and vice versa. - Add the necessary tweaks to your setup file to start and stop on the new operating system. See, for example, the script for Go.
- Test on Windows and Linux to make sure everything works as expected.
The install.sh
file for each framework starts the bash process which will
install that framework. Typically, the first thing done is to call fw_depends
to run installations for any necessary software that TFB has already
created installation scripts for. TFB provides a reasonably wide range of
core software, so your install.sh
may only need to call fw_depends
and
exit. Note: fw_depends
does not guarantee dependency installation, so
list software in the proper order e.g. if foo
depends on bar
use fw_depends bar foo
.
Here are some example install.sh
files
#!/bin/bash
# My framework only needs nodejs
fw_depends nodejs
#!/bin/bash
# My framework needs nodejs and mono and go
fw_depends nodejs mono go
#!/bin/bash
# My framework needs nodejs
fw_depends nodejs
# ...and some other software that there is no installer script for.
# Note: Use IROOT variable to put software in the right folder.
# You can also use FWROOT to refer to the project root, or
# TROOT to refer to the root of your framework
# Please see guidelines on writing installation scripts
wget mystuff.tar.gz -O mystuff.tar.gz
untar mystuff.tar.gz
cd mystuff
make --prefix=$IROOT && sudo make install
To see what TFB provides installations for, look in toolset/setup/linux
in the folders frameworks
, languages
, systools
, and webservers
.
You should pass the filename, without the ".sh" extension, to fw_depends.
Here is a listing as of July 2014:
$ ls frameworks
grails.sh nawak.sh play1.sh siena.sh vertx.sh yesod.sh
jester.sh onion.sh play2.sh treefrog.sh wt.sh
$ ls languages
composer.sh erlang.sh hhvm.sh mono.sh perl.sh pypy.sh racket.sh urweb.sh
dart.sh go.sh java.sh nimrod.sh phalcon.sh python2.sh ringojs.sh xsp.sh
elixir.sh haskell.sh jruby.sh nodejs.sh php.sh python3.sh ruby.sh yaf.sh
$ ls systools
leiningen.sh maven.sh
$ ls webservers
lapis.sh mongrel2.sh nginx.sh openresty.sh resin.sh weber.sh zeromq.sh
The bash_profile.sh
file is sourced before installing software or before
running the framework test. This is mostly used when running your
framework, to perform actions such as updating PATH
or defining environment
variables your framework requires e.g. GOROOT
. You can use these
variables:
- FWROOT: Root of project
- IROOT: Root of installation for the current framework
- TROOT: Root directory for the current framework
Example of bash_profile.sh
:
# Set the root of our go installation
export GOROOT=${IROOT}/go
# Where to find the go executable
export PATH="$GOROOT/bin:$PATH"
export GOPATH=${FWROOT}/go
Do not cause any output, such as using echo
, inside of bash_profile.sh
The setup file is responsible for starting and stopping the test. This script is responsible for (among other things):
- Modifying the framework's configuration to point to the correct database host
- Compiling and/or packaging the code
- Starting the server
- Stopping the server
The setup file is a python script that contains a start() and a stop() function. The start function should build the source, make any necessary changes to the framework's configuration, and then start the server. The stop function should shutdown the server, including all sub-processes as applicable.
By convention, the configuration files used by a framework should specify the database server as localhost
so that developing tests in a single-machine environment can be done in an ad hoc fashion, without using the benchmark scripts.
When running a benchmark script, the script needs to modify each framework's configuration so that the framework connects to a database host provided as a command line argument. In order to do this, use setup_util.replace_text() to make necessary modifications prior to starting the server.
For example:
setup_util.replace_text("wicket/src/main/webapp/WEB-INF/resin-web.xml", "mysql:\/\/.*:3306", "mysql://" + args.database_host + ":3306")
Using localhost
in the raw configuration file is not a requirement as long as the replace_text
call properly injects the database host provided to the benchmarker toolset as a command line argument.
Here is an example of Wicket's setup file.
import subprocess
import sys
import setup_util
##################################################
# start(args, logfile, errfile)
#
# Starts the server for Wicket
# returns 0 if everything completes, 1 otherwise
##################################################
def start(args, logfile, errfile):
# setting the database url
setup_util.replace_text("wicket/src/main/webapp/WEB-INF/resin-web.xml", "mysql:\/\/.*:3306", "mysql://" + args.database_host + ":3306")
# 1. Compile and package
# 2. Clean out possible old tests
# 3. Copy package to Resin's webapp directory
# 4. Start resin
try:
subprocess.check_call("mvn clean compile war:war", shell=True, cwd="wicket", stderr=errfile, stdout=logfile)
subprocess.check_call("rm -rf $RESIN_HOME/webapps/*", shell=True, stderr=errfile, stdout=logfile)
subprocess.check_call("cp wicket/target/hellowicket-1.0-SNAPSHOT.war $RESIN_HOME/webapps/wicket.war", shell=True, stderr=errfile, stdout=logfile)
subprocess.check_call("$RESIN_HOME/bin/resinctl start", shell=True, stderr=errfile, stdout=logfile)
return 0
except subprocess.CalledProcessError:
return 1
##################################################
# stop(logfile, errfile)
#
# Stops the server for Wicket
# returns 0 if everything completes, 1 otherwise
##################################################
def stop(logfile):
try:
subprocess.check_call("$RESIN_HOME/bin/resinctl shutdown", shell=True, stderr=errfile, stdout=logfile)
return 0
except subprocess.CalledProcessError:
return 1
A contributor named @kpacha has built a pure JavaScript tool for generating the setup.py
file for a new framework via an in-browser form. Check out his FrameworkBenchmarks Setup Builder.
- Connect to the Windows server via Remote Desktop.
- Copy
installer-bootstrap.ps1
from "toolset/setup/windows" to the server (use CTRL-C and CTRL-V). - Copy your Linux client private key too.
- Right click on the installer script and select
Run with PowerShell
. - Press Enter to confirm.
- It will install git and then launch
installer.ps1
from the repository, which will install everything else. - The installation takes about 20 minutes.
- Then you have a working console: try
python
,git
,ssh
,curl
,node
etc. and verify that everything works + PowerShell goodies.
The client/database machine is still assumed to be a Linux box. You can install just the client software via
python toolset\run-tests.py -s server-private-ip -c client-private-ip -i "C:\Users\Administrator\Desktop\client.key" --install-software --install client --list-tests
but this step is not required if you already installed the Linux server and client as described above.
Now you can run tests:
python toolset\run-tests.py -s server-private-ip -c client-private-ip -i "C:\Users\Administrator\Desktop\client.key" --max-threads 2 --duration 30 --sleep 5 --name win --test aspnet --type all
-
Connect to the SQL Server host via Remote Desktop.
-
Run a
Command Prompt
as Administrator. -
Enter this command:
powershell -ExecutionPolicy Bypass -Command "iex (New-Object Net.WebClient).DownloadString('https://raw.github.com/TechEmpower/FrameworkBenchmarks/master/toolset/setup/sqlserver/setup-sqlserver-bootstrap.ps1')"
-
This will configure SQL Server, the Windows Firewall, and populate the database.
Now, when running run-tests.py
, just add -d <ip of SQL Server instance>
. This works for the (Windows Server-based) aspnet-sqlserver-raw
and aspnet-sqlserver-entityframework
tests.