This repository is forked from the official implementation SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation with some updates. Private function only.
The pretrained weights can be downloaded here.
All codes are tested under the following environment:
- Ubuntu 16.04
- Python 3.8
- Pytorch 1.8.1
- CUDA 11.1
We train and test our model on official KITTI 3D Object Dataset. Please first download the dataset and organize it as following structure:
kitti
│──ImageSets
│──training
│ ├──calib
│ ├──label_2
│ └──image_2
└──testing
├──calib
└──image_2
git clone [email protected]:excitohe/smoke.git
python setup.py develop
mkdir datasets
ln -s /path_to_kitti_dataset datasets/kitti
First check the config file under configs/
.
We train the model on 4 GPUs with 32 batch size:
python tools/plain_train_net.py --num-gpus 4 --config-file "configs/smoke_dla34_gn.yaml"
For single GPU training, simply run:
python tools/plain_train_net.py --config-file "configs/smoke_dla34_gn.yaml"
We currently only support single GPU testing:
python tools/plain_train_net.py --eval-only --config-file "configs/smoke_dla34_gn.yaml"