Skip to content

fartaha/ml-advanced-probabilistic-methods

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

69 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

visitor badge

ml-advanced-probabilistic-methods

Summary of CS-E4820 - Machine Learning: Advanced Probabilistic Methods @ Aalto University

Summary of Lec 1

Summary of Lec 1
Main Book

Bishop

Ingredients of probabilistic modeling

1. Models
  * Bayesian networks
  * Sparse Bayesian linear regression
  * Gaussian mixture models
  * latent linear models
2. Methods for inference
  * maximum likelihood
  * maximum a posteriori (MAP)
  * Laplace approximation
  * expectation maximization (EM)
  * Variational Bayes (VB)
  * Stochastic variational inference (SVI)
  * ::MCMC methods (missing)::
3. Ways to select between models
 
 <p>..</p>
 > **Example to use LaTEX**

$$\begin{aligned} &\text { Table 1: A table without vertical lines. }\ &\begin{array}{lcc} \hline & \text { Treatment A } & \text { Treatment B } \ \hline \text { John Smith } & 1 & 2 \ \text { Jane Doe } & - & 3 \ \text { Mary Johnson } & 4 & 5 \ \hline \end{array} \end{aligned}$$

About

Summary of CS-E4820 - Machine Learning: Advanced Probabilistic Methods

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published