Skip to content

gakas14/Event-driven-architecture-with-S3-Lambda-snwoflake

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 

Repository files navigation

Event-driven-architecture-with-S3-Lambda-snowflake

In this project, a lambda function will be triggered when a CSV file is uploaded into a bucket(source bucket); the function will extract the CSV file and load the data in a pandas data frame. Afterward, it will remove some unnecessary characters and then save the data in another S3 bucket(destination bucket), triggering the Snowpipe to load the newly created file automatically into a table in Snowflake.

pjt_eda drawio

Step 1: Create an s3 bucket as the source bucket to upload the CSV file and another bucket as a destination to save the transform file.

Source bucket

Screen Shot 2024-01-11 at 11 42 40 AM

Destination bucket

Screen Shot 2024-01-11 at 11 43 31 AM

Step 2: Create a lambda role and a lambda function. And add two lambda layers to execute the different libraries.

Create a lambda role

Screen Shot 2024-01-11 at 11 46 30 AM

with s3 and cloud watch access

Screen Shot 2024-01-11 at 11 48 14 AM

Create the lambda function

Screen Shot 2024-01-11 at 11 50 14 AM

Add the source bucket as a trigger

Screen Shot 2024-01-11 at 11 51 24 AM

Add two lambda layers

Screen Shot 2024-01-11 at 11 52 18 AM

Python script for the lambda

  import pandas as pd
  from io import StringIO
  import boto3
  # import os
  # import csv
  # from csv import reader
  # import io
  # from io import BytesIO
  # import traceback
  s3 = boto3.client('s3')
  def lambda_handler(event, context):
      #print(event)
      # Get the bucket and the file name
      bucket = event['Records'][0]['s3']['bucket']['name']
      key = event['Records'][0]['s3']['object']['key']
  
      print(bucket)
      print(key)
  
      # Get the object
      response = s3.get_object(Bucket=bucket, Key=key) 
  
      # Process the data
      data = response['Body'].read().decode('utf-8')
      df = StringIO(data)
      initial_df= pd.read_csv(df, sep=",")
      #print(df['Average_Covered_Charges'])
  
  
      # Remove ',' in the column street address 
      initial_df['Street_Address_'] = initial_df['Street_Address_'].str.replace(',', ' ')
      print(initial_df['Street_Address_'])
    
  
      dest_bucket =  'gakas-snowflake-zero-to-hero-masterclass'
      dest_key = 'snowflake/csv/health_transform.csv'
      csv_buffer = StringIO()
      initial_df.to_csv(csv_buffer, index=False)
  
      # Save the transform file 
      s3.put_object(Body=csv_buffer.getvalue(), Bucket=dest_bucket , Key=dest_key) 

Step 3: Upload the CSV file in the source bucket and check the destination bucket to get the transform file.

Source bucket

Screen Shot 2024-01-11 at 11 57 24 AM

destination bucket

Screen Shot 2024-01-11 at 11 58 07 AM

Step 4: Configure the snowflake to connect with the destination bucket.

  --drop database pjt_eda;
  --Database Creation 
  create database if not exists pjt_eda;
  use pjt_eda;

  --Table Creation
  CREATE or replace TABLE  PJT_EDA.PUBLIC.HEALTHCARE (
        AVERAGE_COVERED_CHARGES    NUMBER(38,6)  
       ,AVERAGE_TOTAL_PAYMENTS    NUMBER(38,6)  
       ,TOTAL_DISCHARGES    NUMBER(38,0)  
       ,BACHELORORHIGHER    NUMBER(38,1)  
       ,HSGRADORHIGHER    NUMBER(38,1)  
       ,TOTALPAYMENTS    VARCHAR(128)  
       ,REIMBURSEMENT    VARCHAR(128)  
       ,TOTAL_COVERED_CHARGES    VARCHAR(128) 
       ,REFERRALREGION_PROVIDER_NAME    VARCHAR(256)  
       ,REIMBURSEMENTPERCENTAGE    NUMBER(38,9)  
       ,DRG_DEFINITION    VARCHAR(256)  
       ,REFERRAL_REGION    VARCHAR(26)  
       ,INCOME_PER_CAPITA    NUMBER(38,0)  
       ,MEDIAN_EARNINGSBACHELORS    NUMBER(38,0)  
       ,MEDIAN_EARNINGS_GRADUATE    NUMBER(38,0)  
       ,MEDIAN_EARNINGS_HS_GRAD    NUMBER(38,0)  
       ,MEDIAN_EARNINGSLESS_THAN_HS    NUMBER(38,0)  
       ,MEDIAN_FAMILY_INCOME    NUMBER(38,0)  
       ,NUMBER_OF_RECORDS    NUMBER(38,0)  
       ,POP_25_OVER    NUMBER(38,0)  
       ,PROVIDER_CITY    VARCHAR(128)  
       ,PROVIDER_ID    NUMBER(38,0)  
       ,PROVIDER_NAME    VARCHAR(256)  
       ,PROVIDER_STATE    VARCHAR(128)  
       ,PROVIDER_STREET_ADDRESS    VARCHAR(256)  
       ,PROVIDER_ZIP_CODE    NUMBER(38,0)  
    );

   --Create an integration object for the external stage
   create or replace storage integration pjt_EDA_integration
    type = external_stage
    storage_provider = s3
    enabled = true
    storage_aws_role_arn = 'arn:aws:iam::200105849428:role/Snowflake_role'
    storage_allowed_locations = ('s3://gakas-snowflake-zero-to-hero-masterclass/snowflake/');


  --Describe integration object to fetch external_id and to be used in s3
  DESC INTEGRATION pjt_EDA_integration;

  -- Create a file object
  Create or replace file format PJT_EDA.public.csv_format
                type = csv
                --field_delimiter = '|'
                skip_header = 1
                null_if = ('NULL', 'null')
                empty_field_as_null = true;


  -- Create a stage object
  Create or replace stage PJT_EDA.public.ext_csv_stage
    URL = 's3://gakas-snowflake-zero-to-hero-masterclass/snowflake/csv'
    STORAGE_INTEGRATION = pjt_EDA_integration
    file_format = PJT_EDA.public.csv_format;

  list @ext_csv_stage;

  -- Create a pipe
  create or replace pipe PJT_EDA.PUBLIC.pjt_eda_pipe 
   auto_ingest=true as copy into PJT_EDA.PUBLIC.HEALTHCARE from 
   @PJT_EDA.PUBLIC.ext_csv_stage FILE_FORMAT=(FORMAT_NAME=csv_format);

  show pipes;

  select * from PJT_EDA.PUBLIC.HEALTHCARE;
  select count(*) from PJT_EDA.PUBLIC.HEALTHCARE;


  delete from PJT_EDA.PUBLIC.HEALTHCARE;

Add an event on the Destination bucket to trigger Snwopipe

Screen Shot 2024-01-14 at 2 24 25 PM

Show the table in snowflake

Screen Shot 2024-01-14 at 3 53 33 PM

About

ETL with AWS Lambda and Snowflake with automation using Snowpipe.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published