Skip to content

gegewen/nested-fno

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Make dataloader

  • step 1: download meta data from google drive and put them into Nested_FNO/ECLIPSE/meta_data
  • step 2: run following code to convert .npy file into .pt files in dataset folder
cd data_config
bash file_config.sh
cd ..
  • step 3: run python3 save_data_loader.py to create DATA_LOADER_DICT.pth

Training procedure

  • step 1: train each models seperately using the following code. Each model requires an NVIDIA A100 GPU.
python3 train_FNO4D_DP_GLOBAL.py
python3 train_FNO4D_DP_LGR.py LGR1
python3 train_FNO4D_DP_LGR.py LGR2
python3 train_FNO4D_DP_LGR.py LGR3
python3 train_FNO4D_DP_LGR.py LGR4
python3 train_FNO4D_SG_LGR.py LGR1
python3 train_FNO4D_SG_LGR.py LGR2
python3 train_FNO4D_SG_LGR.py LGR3
python3 train_FNO4D_SG_LGR.py LGR4
  • step 2: monitor training and validation loss with tensorboard
tensorboard --logdir=logs --port=6007 --host=xxxxxx

Finetune procedure

As discussed in the paper, we finetuned dP_LGR1, dP_LGR4, SG_LGR1, SG_LGR1 models with a random instance of pre-generated error.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published