This is the Pytorch implementation for our SDM 2024 paper:
Zhiqiang Guo, Guohui Li, Jianjun Li, Chaoyang Wang, Si Shi. DualVAE: Dual Disentangled Variational AutoEncoder for Recommendation. In SDM 2024. Paper
The interaction data is shared at data/
.
The logs and parameters are shared at log/
and models/
, respectively.
pip install -r requirements.txt
Run train.sh
to train DualVAE:
bash train.sh
You may specify other parameters in train.sh
.
@inproceedings{guo2024dualvae,
author = {Zhiqiang Guo, Guohui Li, Jianjun Li, Chaoyang Wang, Si Shi},
title = {DualVAE: Dual Disentangled Variational AutoEncoder for Recommendation},
booktitle = {Proceedings of SDM},
pages = {xxx},
year = {2024}
}