PetSpotR allows you to use advanced AI models to report and find lost pets. It is a sample application that uses Azure Machine Learning to train a model to detect pets in images.
It also leverages popular open-source projects such as Dapr and Keda to provide a scalable and resilient architecture.
- Bicep - Infrastructure as code
- Bicep extensibility Kubernetes provider - Model Kubernetes resources in Bicep
- Azure Kubernetes Service
- Azure Blob Storage
- Azure Cosmos DB
- Azure Service Bus
- Azure Machine Learning
- Hugging Face - AI model community
- Azure Load Testing - Application load testing
- Blazor - Frontend web application
- Python Flask - Backend server
- Dapr - Microservice building blocks
- KEDA - Kubernetes event-driven autoscaling
Note: This application is a demo app which is not intended to be used in production. It is intended to demonstrate how to use Azure Machine Learning and other Azure services to build a scalable and resilient application. Use at your own risk.
PetSpotR is a microservices application that uses Azure Machine Learning to train a model to detect pets in images. It also uses Azure Blob Storage to store images and Azure Cosmos DB to store metadata, leveraging Dapr bindings and state management to abstract away the underlying infrastructure.
The frontend is a .NET Blazor application that allows users to upload images and view the results. The backend is a Python Flask application that uses Azure Machine Learning to train and score the model.
The application scales using KEDA, which allows you to scale based on the number of messages in a queue. The application uses Azure Service Bus to queue messages for the backend to process, leveraging Dapr pub/sub to abstract away the underlying infrastructure.
Azure Load Testing is used to simulate a large number of users uploading images to the application, which allows us to test the application's scalability.
- Azure subscription
- Note: This application will create Azure resources that will incur costs. You will also need to manually request quota for
Standard NCSv3 Family Cluster Dedicated vCPUs
for Azure ML workspaces, as the default quota is 0.
- Note: This application will create Azure resources that will incur costs. You will also need to manually request quota for
- Azure CLI
- Dapr CLI
- Helm
- Docker
- Python 3.8
- Dotnet SDK
- Bicep extensibility
The services in this application can be run locally using the Dapr CLI. This is useful for development and testing. The ML training and scoring will run within an Azure Machine Learning workspace in your Azure subscription.
- Install the Dapr CLI
- Initialize Dapr
dapr init
- Configure your Dapr images component for Windows or Mac
- Open ./iac/dapr/local/images.yaml
- Uncomment the appropriate section for your OS, and comment out the other section
- Create a resource group
az group create -g myrg --location <location-deployment> # find locations with az account list-locations
- Deploy the required Azure resources
az deployment group create --resource-group myrg --template-file ./iac/infra.bicep --parameters mode=dev
- Run the backend
cd src/backend pip install -r ./requirements.txt dapr run --app-id backend --app-port 6002 --components-path ../../iac/dapr/local -- python app.py
- Run the frontend
cd src/frontend/PetSpotR dapr run --app-id frontend --app-port 5114 --components-path ../../../iac/dapr/local -- dotnet watch
- Navigate to http://localhost:5114
- Ensure you have access to an Azure subscription and the Azure CLI installed
az login az account set --subscription "My Subscription"
- Clone this repository
git clone https://github.com/azure-samples/petspotr.git cd petspotr
- Deploy the infrastructure
az deployment group create --resource-group myrg --template-file ./iac/infra.bicep
- Deploy the configuration
az deployment group create --resource-group myrg --template-file ./iac/config.bicep
- Get AKS credentials
az aks get-credentials --resource-group myrg --name petspotr
- Install Helm Charts
helm repo add dapr https://dapr.github.io/helm-charts/ helm repo add kedacore https://kedacore.github.io/charts helm repo update helm upgrade dapr dapr/dapr --install --version=1.10 --namespace dapr-system --create-namespace --wait helm upgrade keda kedacore/keda --install --version=2.9.4 --namespace keda --create-namespace --wait
- Log into Azure Container Registry (replace
myacr
with your registry name). You can get your registry name from your resource group in the Azure Portal or by runningaz acr list -g myrg -otable
.az acr login --name myacr
- Build and push containers (replace
myacr
with your registry name).docker build -t myacr.azurecr.io/backend:latest ./src/backend docker build -t myacr.azurecr.io/frontend:latest ./src/frontend docker push myacr.azurecr.io/petspotr:latest docker push myacr.azurecr.io/frontend:latest
- Deploy Dapr components
kubectl apply -f ./iac/dapr/azure/images.yaml kubectl apply -f ./iac/dapr/azure/pets.yaml kubectl apply -f ./iac/dapr/azure/pubsub.yaml
- Deploy the application
az deployment group create --resource-group myrg --template-file ./iac/app.bicep
- Get your frontend URL
kubectl get ingress
- Navigate to your frontend URL