Skip to content

git-gfischer/gym-quadruped

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Mujoco Gym Environments for quadupedal legged locomotion

Install Instructions

git clone https://github.com/iit-DLSLab/gym-quadruped.git
cd gym-quadruped
pip install -e .   # This will install the package in editable mode

Usage Instructions

from gym_quadruped.quadruped_env import QuadrupedEnv

robot_name = "mini_cheetah"   # "aliengo", "mini_cheetah", "go2", "hyqreal", ...
scene_name = "flat"
robot_feet_geom_names = dict(FL='FL', FR='FR', RL='RL', RR='RR')
robot_leg_joints = dict(FL=['FL_hip_joint', 'FL_thigh_joint', 'FL_calf_joint', ],  # TODO: Make configs per robot.
                        FR=['FR_hip_joint', 'FR_thigh_joint', 'FR_calf_joint', ],
                        RL=['RL_hip_joint', 'RL_thigh_joint', 'RL_calf_joint', ],
                        RR=['RR_hip_joint', 'RR_thigh_joint', 'RR_calf_joint', ])

state_observables_names = tuple(QuadrupedEnv.ALL_OBS)  # return all available state observables

env = QuadrupedEnv(robot='mini_cheetah',
                   hip_height=0.25,
                   legs_joint_names=robot_leg_joints,  # Joint names of the legs DoF
                   feet_geom_name=robot_feet_geom_names,  # Geom/Frame id of feet
                   scene=scene_name,
                   ref_base_lin_vel=0.5, # Constant magnitude of reference base linear velocity [m/s]
                   base_vel_command_type="forward",  # "forward", "random", "forward+rotate", "human"
                   state_obs_names=state_observables_names,  # Desired quantities in the 'state'
                   )
obs = env.reset()

env.render()
for _ in range(10000):
    action = env.action_space.sample() * 50  # Sample random action
    state, reward, is_terminated, is_truncated, info = env.step(action=action)

    if is_terminated:
        pass
        # Do some stuff
    env.render()
env.close()

Package-Name suggestions accepted

The end idea of this package is to be able to have a Mujoco Gym Environment to test model-based and learnign controllers for locomotion in controlled environments with shared metrics (e.g., energy efficiency, robustness, etc.)

The core principles should be:

  • We (will) use robot_descriptions.py to load the robot URDF/SDF files and create the Mujoco model.
  • We programatically generate terrains and obstacles to test the robot in different scenarios.
  • We offer a suit of metrics to evaluate and compare the performance of different controllers with a simple API.
  • THIS IS A LIGHTWEIGHT PACKAGE. all custom stuff should be defined elsewhere.
  • We will publish datasets of expert model-based/learning controlled trajectories using LeRobot (project structure inherited from them) and Huggingface API.

At some point we should generate mujoco jax versions of the environments for simulation and data-collection in GPU.

Death to C++

Att: Giulio Turrisi

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%