-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
2d9f8b7
commit 41c3812
Showing
14 changed files
with
988 additions
and
1 deletion.
There are no files selected for viewing
File renamed without changes.
File renamed without changes.
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
name := "MRS" | ||
|
||
version := "1.0" | ||
|
||
scalaVersion := "2.10.4" | ||
|
||
libraryDependencies += "org.apache.spark" %% "spark-core" % "1.2.1" % "provided" | ||
|
||
libraryDependencies += "org.apache.spark" %% "spark-graphx" % "1.2.1" % "provided" | ||
|
||
libraryDependencies += "org.apache.spark" % "spark-mllib_2.10" % "1.2.1" % "provided" | ||
|
||
libraryDependencies += "com.github.scopt" %% "scopt" % "3.3.0" | ||
|
||
resolvers += Resolver.sonatypeRepo("public") |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
5 14898471 | ||
10 20782149 | ||
20 32532654 | ||
50 69492644 | ||
60 79577044 | ||
100 133809487 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
|
||
|
||
import scala.reflect.runtime.universe._ | ||
|
||
/** | ||
* Abstract class for parameter case classes. | ||
* This overrides the [[toString]] method to print all case class fields by name and value. | ||
* @tparam T Concrete parameter class. | ||
*/ | ||
abstract class AbstractParams[T: TypeTag] { | ||
|
||
private def tag: TypeTag[T] = typeTag[T] | ||
|
||
/** | ||
* Finds all case class fields in concrete class instance, and outputs them in JSON-style format: | ||
* { | ||
* [field name]:\t[field value]\n | ||
* [field name]:\t[field value]\n | ||
* ... | ||
* } | ||
*/ | ||
override def toString: String = { | ||
val tpe = tag.tpe | ||
val allAccessors = tpe.declarations.collect { | ||
case m: MethodSymbol if m.isCaseAccessor => m | ||
} | ||
val mirror = runtimeMirror(getClass.getClassLoader) | ||
val instanceMirror = mirror.reflect(this) | ||
allAccessors.map { f => | ||
val paramName = f.name.toString | ||
val fieldMirror = instanceMirror.reflectField(f) | ||
val paramValue = fieldMirror.get | ||
s" $paramName:\t$paramValue" | ||
}.mkString("{\n", ",\n", "\n}") | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,153 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.examples.graphx | ||
|
||
import scala.collection.mutable | ||
import org.apache.spark._ | ||
import org.apache.spark.storage.StorageLevel | ||
import org.apache.spark.graphx._ | ||
import org.apache.spark.graphx.lib._ | ||
import org.apache.spark.graphx.PartitionStrategy._ | ||
|
||
/** | ||
* Driver program for running graph algorithms. | ||
*/ | ||
object Analytics extends Logging { | ||
|
||
def main(args: Array[String]): Unit = { | ||
if (args.length < 2) { | ||
System.err.println( | ||
"Usage: Analytics <taskType> <file> --numEPart=<num_edge_partitions> [other options]") | ||
System.err.println("Supported 'taskType' as follows:") | ||
System.err.println(" pagerank Compute PageRank") | ||
System.err.println(" cc Compute the connected components of vertices") | ||
System.err.println(" triangles Count the number of triangles") | ||
System.exit(1) | ||
} | ||
|
||
val taskType = args(0) | ||
val fname = args(1) | ||
val optionsList = args.drop(2).map { arg => | ||
arg.dropWhile(_ == '-').split('=') match { | ||
case Array(opt, v) => (opt -> v) | ||
case _ => throw new IllegalArgumentException("Invalid argument: " + arg) | ||
} | ||
} | ||
val options = mutable.Map(optionsList: _*) | ||
|
||
val conf = new SparkConf() | ||
GraphXUtils.registerKryoClasses(conf) | ||
|
||
val numEPart = options.remove("numEPart").map(_.toInt).getOrElse { | ||
println("Set the number of edge partitions using --numEPart.") | ||
sys.exit(1) | ||
} | ||
val partitionStrategy: Option[PartitionStrategy] = options.remove("partStrategy") | ||
.map(PartitionStrategy.fromString(_)) | ||
val edgeStorageLevel = options.remove("edgeStorageLevel") | ||
.map(StorageLevel.fromString(_)).getOrElse(StorageLevel.MEMORY_ONLY) | ||
val vertexStorageLevel = options.remove("vertexStorageLevel") | ||
.map(StorageLevel.fromString(_)).getOrElse(StorageLevel.MEMORY_ONLY) | ||
|
||
taskType match { | ||
case "pagerank" => | ||
val tol = options.remove("tol").map(_.toFloat).getOrElse(0.001F) | ||
val outFname = options.remove("output").getOrElse("") | ||
val numIterOpt = options.remove("numIter").map(_.toInt) | ||
|
||
options.foreach { | ||
case (opt, _) => throw new IllegalArgumentException("Invalid option: " + opt) | ||
} | ||
|
||
println("======================================") | ||
println("| PageRank |") | ||
println("======================================") | ||
|
||
val sc = new SparkContext(conf.setAppName("PageRank(" + fname + ")")) | ||
|
||
val unpartitionedGraph = GraphLoader.edgeListFile(sc, fname, | ||
numEdgePartitions = numEPart, | ||
edgeStorageLevel = edgeStorageLevel, | ||
vertexStorageLevel = vertexStorageLevel).cache() | ||
val graph = partitionStrategy.foldLeft(unpartitionedGraph)(_.partitionBy(_)) | ||
|
||
println("GRAPHX: Number of vertices " + graph.vertices.count) | ||
println("GRAPHX: Number of edges " + graph.edges.count) | ||
|
||
val pr = (numIterOpt match { | ||
case Some(numIter) => PageRank.run(graph, numIter) | ||
case None => PageRank.runUntilConvergence(graph, tol) | ||
}).vertices.cache() | ||
|
||
println("GRAPHX: Total rank: " + pr.map(_._2).reduce(_ + _)) | ||
|
||
if (!outFname.isEmpty) { | ||
logWarning("Saving pageranks of pages to " + outFname) | ||
pr.map { case (id, r) => id + "\t" + r }.saveAsTextFile(outFname) | ||
} | ||
|
||
sc.stop() | ||
|
||
case "cc" => | ||
options.foreach { | ||
case (opt, _) => throw new IllegalArgumentException("Invalid option: " + opt) | ||
} | ||
|
||
println("======================================") | ||
println("| Connected Components |") | ||
println("======================================") | ||
|
||
val sc = new SparkContext(conf.setAppName("ConnectedComponents(" + fname + ")")) | ||
val unpartitionedGraph = GraphLoader.edgeListFile(sc, fname, | ||
numEdgePartitions = numEPart, | ||
edgeStorageLevel = edgeStorageLevel, | ||
vertexStorageLevel = vertexStorageLevel).cache() | ||
val graph = partitionStrategy.foldLeft(unpartitionedGraph)(_.partitionBy(_)) | ||
|
||
val cc = ConnectedComponents.run(graph) | ||
println("Components: " + cc.vertices.map { case (vid, data) => data }.distinct()) | ||
sc.stop() | ||
|
||
case "triangles" => | ||
options.foreach { | ||
case (opt, _) => throw new IllegalArgumentException("Invalid option: " + opt) | ||
} | ||
|
||
println("======================================") | ||
println("| Triangle Count |") | ||
println("======================================") | ||
|
||
val sc = new SparkContext(conf.setAppName("TriangleCount(" + fname + ")")) | ||
val graph = GraphLoader.edgeListFile(sc, fname, | ||
canonicalOrientation = true, | ||
numEdgePartitions = numEPart, | ||
edgeStorageLevel = edgeStorageLevel, | ||
vertexStorageLevel = vertexStorageLevel) | ||
// TriangleCount requires the graph to be partitioned | ||
.partitionBy(partitionStrategy.getOrElse(RandomVertexCut)).cache() | ||
val triangles = TriangleCount.run(graph) | ||
println("Triangles: " + triangles.vertices.map { | ||
case (vid, data) => data.toLong | ||
}.reduce(_ + _) / 3) | ||
sc.stop() | ||
|
||
case _ => | ||
println("Invalid task type.") | ||
} | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,144 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
|
||
|
||
import org.apache.commons.math3.linear._ | ||
|
||
/** | ||
* Alternating least squares matrix factorization. | ||
* | ||
* This is an example implementation for learning how to use Spark. For more conventional use, | ||
* please refer to org.apache.spark.mllib.recommendation.ALS | ||
*/ | ||
object LocalALS { | ||
|
||
// Parameters set through command line arguments | ||
var M = 0 // Number of movies | ||
var U = 0 // Number of users | ||
var F = 0 // Number of features | ||
var ITERATIONS = 0 | ||
val LAMBDA = 0.01 // Regularization coefficient | ||
|
||
def generateR(): RealMatrix = { | ||
val mh = randomMatrix(M, F) | ||
val uh = randomMatrix(U, F) | ||
mh.multiply(uh.transpose()) | ||
} | ||
|
||
def rmse(targetR: RealMatrix, ms: Array[RealVector], us: Array[RealVector]): Double = { | ||
val r = new Array2DRowRealMatrix(M, U) | ||
for (i <- 0 until M; j <- 0 until U) { | ||
r.setEntry(i, j, ms(i).dotProduct(us(j))) | ||
} | ||
val diffs = r.subtract(targetR) | ||
var sumSqs = 0.0 | ||
for (i <- 0 until M; j <- 0 until U) { | ||
val diff = diffs.getEntry(i, j) | ||
sumSqs += diff * diff | ||
} | ||
math.sqrt(sumSqs / (M.toDouble * U.toDouble)) | ||
} | ||
|
||
def updateMovie(i: Int, m: RealVector, us: Array[RealVector], R: RealMatrix) : RealVector = { | ||
var XtX: RealMatrix = new Array2DRowRealMatrix(F, F) | ||
var Xty: RealVector = new ArrayRealVector(F) | ||
// For each user that rated the movie | ||
for (j <- 0 until U) { | ||
val u = us(j) | ||
// Add u * u^t to XtX | ||
XtX = XtX.add(u.outerProduct(u)) | ||
// Add u * rating to Xty | ||
Xty = Xty.add(u.mapMultiply(R.getEntry(i, j))) | ||
} | ||
// Add regularization coefficients to diagonal terms | ||
for (d <- 0 until F) { | ||
XtX.addToEntry(d, d, LAMBDA * U) | ||
} | ||
// Solve it with Cholesky | ||
new CholeskyDecomposition(XtX).getSolver.solve(Xty) | ||
} | ||
|
||
def updateUser(j: Int, u: RealVector, ms: Array[RealVector], R: RealMatrix) : RealVector = { | ||
var XtX: RealMatrix = new Array2DRowRealMatrix(F, F) | ||
var Xty: RealVector = new ArrayRealVector(F) | ||
// For each movie that the user rated | ||
for (i <- 0 until M) { | ||
val m = ms(i) | ||
// Add m * m^t to XtX | ||
XtX = XtX.add(m.outerProduct(m)) | ||
// Add m * rating to Xty | ||
Xty = Xty.add(m.mapMultiply(R.getEntry(i, j))) | ||
} | ||
// Add regularization coefficients to diagonal terms | ||
for (d <- 0 until F) { | ||
XtX.addToEntry(d, d, LAMBDA * M) | ||
} | ||
// Solve it with Cholesky | ||
new CholeskyDecomposition(XtX).getSolver.solve(Xty) | ||
} | ||
|
||
def showWarning() { | ||
System.err.println( | ||
"""WARN: This is a naive implementation of ALS and is given as an example! | ||
|Please use the ALS method found in org.apache.spark.mllib.recommendation | ||
|for more conventional use. | ||
""".stripMargin) | ||
} | ||
|
||
def main(args: Array[String]) { | ||
|
||
args match { | ||
case Array(m, u, f, iters) => { | ||
M = m.toInt | ||
U = u.toInt | ||
F = f.toInt | ||
ITERATIONS = iters.toInt | ||
} | ||
case _ => { | ||
System.err.println("Usage: LocalALS <M> <U> <F> <iters>") | ||
System.exit(1) | ||
} | ||
} | ||
|
||
showWarning() | ||
|
||
println(s"Running with M=$M, U=$U, F=$F, iters=$ITERATIONS") | ||
|
||
val R = generateR() | ||
|
||
// Initialize m and u randomly | ||
var ms = Array.fill(M)(randomVector(F)) | ||
var us = Array.fill(U)(randomVector(F)) | ||
|
||
// Iteratively update movies then users | ||
for (iter <- 1 to ITERATIONS) { | ||
println(s"Iteration $iter:") | ||
ms = (0 until M).map(i => updateMovie(i, ms(i), us, R)).toArray | ||
us = (0 until U).map(j => updateUser(j, us(j), ms, R)).toArray | ||
println("RMSE = " + rmse(R, ms, us)) | ||
println() | ||
} | ||
} | ||
|
||
private def randomVector(n: Int): RealVector = | ||
new ArrayRealVector(Array.fill(n)(math.random)) | ||
|
||
private def randomMatrix(rows: Int, cols: Int): RealMatrix = | ||
new Array2DRowRealMatrix(Array.fill(rows, cols)(math.random)) | ||
|
||
} |
Oops, something went wrong.