Skip to content

Repository for MeshTalk supplemental material and code once the (already approved) 16 GHS captures our lab will make publicly available are released.

License

Notifications You must be signed in to change notification settings

gongzhihong/meshtalk

 
 

Repository files navigation

meshtalk

This repository contains code to run MeshTalk for face animation from audio. If you use MeshTalk, please cite

@inproceedings{richard2021meshtalk,
    author    = {Richard, Alexander and Zollh\"ofer, Michael and Wen, Yandong and de la Torre, Fernando and Sheikh, Yaser},
    title     = {MeshTalk: 3D Face Animation From Speech Using Cross-Modality Disentanglement},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {1173-1182}
}

Supplemental Material

Watch the video

Running MeshTalk

Dependencies

ffmpeg
numpy
torch         (tested with v1.10.0)
pytorch3d     (tested with v0.4.0)
torchaudio    (tested with v0.10.0)

Animating a Face Mesh from Audio

Download the pretrained models and unzip them. Make sure your python path contains the root directory (export PYTHONPATH=<your_meshtalk_root_directory>).

Then, run

python animate_face.py --model_dir <your_pretrained_model_dir> --audio_file <your_speech_snippet.wav> --output <your_output_file.mp4>

See a description of command line arguments via python animate_face.py --help. We provide a neutral face template mesh in assets/face_template.obj. Note that the rendered results look slightly different than in the paper and supplemental video because we use a differnt (open source) rendering engine in this repository.

Training your own MeshTalk version

We are in the process of releasing high-quality 3D face captures of 16 subjects (a subset of the dataset used in this paper). We will link to the dataset here once it is available.

License

The code and dataset are released under CC-NC 4.0 International license.

About

Repository for MeshTalk supplemental material and code once the (already approved) 16 GHS captures our lab will make publicly available are released.

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%