Skip to content

A PyTorch-based framework for Quantum Simulation, with support for easy deployments on real quantum computers.

License

Notifications You must be signed in to change notification settings

googlercolin/torchquantum

 
 

Repository files navigation

torchquantum Logo

A PyTorch Library for Quantum Simulation

Faster, Scalable, Easy Debugging, Easy Deployment on Real Machine

MIT License Read the Docs Discourse status Website

👋 Welcome

What it is doing

Quantum simulation framework based on PyTorch. It supports statevector simulation and pulse simulation (coming soon) on GPUs. It can scale up to the simulation of 25 qubits with multiple GPUs.

Who will benefit

Researchers on quantum algorithm design, parameterized quantum circuit training, quantum optimal control, quantum machine learning

Difference to Qiskit

Dynamic computatioh graph, automatic gradient computation, fast GPU support, batch model tersorized processing.

Features

  • Easy construction and simulation of quantum circuits in PyTorch
  • Dynamic computation graph for easy debugging
  • Gradient support via autograd
  • Batch mode inference and training on CPU/GPU.
  • Easy deployment on real quantum devices such as IBMQ
  • Easy hybrid classical-quantum model construction
  • (coming soon) pulse-level simulation

News

  • Welcome to contribute! Please contact us or post in the forum if you want to have new examples implemented by TorchQuantum or any other questions.
  • Qmlsys website goes online: qmlsys.mit.edu

Installation

git clone https://github.com/mit-han-lab/torchquantum.git
cd torchquantum
pip install --editable .

Basic Usage

import torchquantum as tq
import torchquantum.functional as tqf

x = tq.QuantumDevice(n_wires=1)

x.hadamard(wires=0)

tqf.hadamard(x, wires=0)
tqf.x(x, wires=1)
tqf.cnot(x, wires=[0, 1])

# print the current state (dynamic computation graph supported)
print(x.states)

Usage

Construct parameterized quantum circuit models as simple as constructing a normal pytorch model.

import torch.nn as nn
import torch.nn.functional as F 
import torchquantum as tq
import torchquantum.functional as tqf

class QFCModel(nn.Module):
  def __init__(self):
    super().__init__()
    self.n_wires = 4
    self.q_device = tq.QuantumDevice(n_wires=self.n_wires)
    self.measure = tq.MeasureAll(tq.PauliZ)
    
    self.encoder_gates = [tqf.rx] * 4 + [tqf.ry] * 4 + \
                         [tqf.rz] * 4 + [tqf.rx] * 4
    self.rx0 = tq.RX(has_params=True, trainable=True)
    self.ry0 = tq.RY(has_params=True, trainable=True)
    self.rz0 = tq.RZ(has_params=True, trainable=True)
    self.crx0 = tq.CRX(has_params=True, trainable=True)

  def forward(self, x):
    bsz = x.shape[0]
    # down-sample the image
    x = F.avg_pool2d(x, 6).view(bsz, 16)
    
    # reset qubit states
    self.q_device.reset_states(bsz)
    
    # encode the classical image to quantum domain
    for k, gate in enumerate(self.encoder_gates):
      gate(self.q_device, wires=k % self.n_wires, params=x[:, k])
    
    # add some trainable gates (need to instantiate ahead of time)
    self.rx0(self.q_device, wires=0)
    self.ry0(self.q_device, wires=1)
    self.rz0(self.q_device, wires=3)
    self.crx0(self.q_device, wires=[0, 2])
    
    # add some more non-parameterized gates (add on-the-fly)
    tqf.hadamard(self.q_device, wires=3)
    tqf.sx(self.q_device, wires=2)
    tqf.cnot(self.q_device, wires=[3, 0])
    tqf.qubitunitary(self.q_device0, wires=[1, 2], params=[[1, 0, 0, 0],
                                                           [0, 1, 0, 0],
                                                           [0, 0, 0, 1j],
                                                           [0, 0, -1j, 0]])
    
    # perform measurement to get expectations (back to classical domain)
    x = self.measure(self.q_device).reshape(bsz, 2, 2)
    
    # classification
    x = x.sum(-1).squeeze()
    x = F.log_softmax(x, dim=1)

    return x

Papers using TorchQuantum

Dependencies

  • 3.9 >= Python >= 3.7 (Python 3.10 may have the concurrent package issue for Qiskit)
  • PyTorch >= 1.8.0
  • configargparse >= 0.14
  • GPU model training requires NVIDIA GPUs

MNIST Example

Train a quantum circuit to perform MNIST task and deploy on the real IBM Quito quantum computer as in mnist_example.py script:

cd examples/simple_mnist
python mnist_example.py

Files

File Description
devices.py QuantumDevice class which stores the statevector
encoding.py Encoding layers to encode classical values to quantum domain
functional.py Quantum gate functions
operators.py Quantum gate classes
layers.py Layer templates such as RandomLayer
measure.py Measurement of quantum states to get classical values
graph.py Quantum gate graph used in static mode
super_layer.py Layer templates for SuperCircuits
plugins/qiskit* Convertors and processors for easy deployment on IBMQ
examples/ More examples for training QML and VQE models

Contact

TorchQuantum Forum

Hanrui Wang [email protected]

Citation

@inproceedings{hanruiwang2022quantumnas,
    title     = {Quantumnas: Noise-adaptive search for robust quantum circuits},
    author    = {Wang, Hanrui and Ding, Yongshan and Gu, Jiaqi and Li, Zirui and Lin, Yujun and Pan, David Z and Chong, Frederic T and Han, Song},
    booktitle = {The 28th IEEE International Symposium on High-Performance Computer Architecture (HPCA-28)},
    year      = {2022}
}

About

A PyTorch-based framework for Quantum Simulation, with support for easy deployments on real quantum computers.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.4%
  • Shell 1.6%