Skip to content

implementations of various types of auto-encoders in tensorflow(in progress)

License

Notifications You must be signed in to change notification settings

gopala-kr/autoencoders

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Types of Autoencoders

  • [AE]: Fully-connected autoencoder
  • [SparseAE]: Sparse autoencoder
  • [DeepAE]: Deep (fully-connected) autoencoder
  • [ConvAE]: Convolutional autoencoder
  • [UpconvAE]: Upconvolutional autoencoder - also known by several other names
  • [DenoisingAE]: Denoising (convolutional) autoencoder
  • [CAE]: Contractive autoencoder
  • [Seq2SeqAE]: Sequence-to-sequence autoencoder
  • [VAE]: Variational autoencoder
  • [CatVAE]: Categorical variational autoencoder
  • [AAE]: Adversarial autoencoder
  • [WTA-AE]: Winner-take-all autoencoder

Variants of Variational Autoencoder

Name Paper Link Loss Function
VAE Arxiv
CVAE Arxiv
DVAE Arxiv (to be added)
AAE Arxiv (to be added)

Variants of VAE structure


References

Maintainer

Gopala KR / @gopala-kr


About

implementations of various types of auto-encoders in tensorflow(in progress)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published