4 bits quantization of LLaMa using GPTQ
GPTQ is SOTA one-shot weight quantization method
This code is based on GPTQ
LLaMa-7B(click me)
LLaMa-7B | Bits | group-size | memory(MiB) | Wikitext2 | PTB | C4 | checkpoint size(GB) |
---|---|---|---|---|---|---|---|
FP16 | 16 | - | 13940 | 5.67 | 8.79 | 7.05 | 12.5 |
RTN | 4 | - | - | 6.28 | 9.68 | 7.70 | - |
GPTQ | 4 | - | 4740 | 6.79 | 10.67 | 8.28 | 3.5 |
GPTQ | 4 | 128 | 4891 | 6.26 | 9.71 | 7.60 | 3.7 |
RTN | 3 | - | - | 25.66 | 61.25 | 28.19 | - |
GPTQ | 3 | - | 3852 | 20.86 | 37.54 | 22.19 | 2.7 |
GPTQ | 3 | 128 | 4116 | 10.60 | 14.74 | 10.39 | 3.0 |
LLaMa-13B
LLaMa-13B | Bits | group-size | memory(MiB) | Wikitext2 | PTB | C4 | checkpoint size(GB) |
---|---|---|---|---|---|---|---|
FP16 | 16 | - | OOM | 5.08 | 8.06 | 6.58 | 24.2 |
RTN | 4 | - | - | 5.52 | 8.62 | 6.96 | - |
GPTQ | 4 | - | 8410 | 5.35 | 8.40 | 6.82 | 6.5 |
GPTQ | 4 | 128 | 8747 | 5.21 | 8.20 | 6.70 | - |
RTN | 3 | - | - | 25.66 | 61.25 | 28.19 | - |
GPTQ | 3 | - | 6870 | 6.77 | 10.29 | 8.34 | 5.1 |
GPTQ | 3 | 128 | 7277 | 5.66 | 8.74 | 7.16 | 5.4 |
LLaMa-33B
LLaMa-33B | Bits | group-size | memory(MiB) | Wikitext2 | PTB | C4 | checkpoint size(GB) |
---|---|---|---|---|---|---|---|
FP16 | 16 | - | OOM | 4.10 | 7.29 | 5.97 | 60.5 |
GPTQ | 4 | - | 19499 | 4.45 | 7.58 | 6.22 | - |
GPTQ | 4 | 128 | 20570 | 4.22 | 7.38 | 6.06 | 16.8 |
GPTQ | 3 | - | 15499 | 5.78 | 8.98 | 7.38 | - |
GPTQ | 3 | 128 | 16566 | 4.84 | 7.83 | 6.49 | 13.0 |
LLaMa-65B
LLaMa-65B | Bits | group-size | memory(MiB) | Wikitext2 | PTB | C4 | checkpoint size(GB) |
---|---|---|---|---|---|---|---|
FP16 | 16 | - | OOM | 3.53 | 6.90 | 5.61 | 121.0 |
Quantization requires a large amount of CPU memory. However, the memory required can be reduced by using swap memory.
Depending on the GPUs/drivers, there may be a difference in performance, which decreases as the model size increases.(IST-DASLab/gptq#1)
According to GPTQ paper, As the size of the model increases, the difference in performance between FP16 and GPTQ decreases.
If you don't have conda, install it first.
conda create --name gptq python=3.9 -y
conda activate gptq
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
# Or, if you're having trouble with conda, use pip with python3.9:
# pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa
cd GPTQ-for-LLaMa
pip install -r requirements.txt
python setup_cuda.py install
# Benchmark performance for FC2 layer of LLaMa-7B
CUDA_VISIBLE_DEVICES=0 python test_kernel.py
torch
: tested on v2.0.0+cu117transformers
: tested on v4.28.0.dev0datasets
: tested on v2.10.1safetensors
: tested on v0.3.0- (to run 4-bit kernels: setup for compiling PyTorch CUDA extensions, see also https://pytorch.org/tutorials/advanced/cpp_extension.html, tested on CUDA 11.7)
All experiments were run on a single NVIDIA RTX3090.
#convert LLaMa to hf
python convert_llama_weights_to_hf.py --input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path
# Benchmark language generation with 4-bit LLaMa-7B:
# Save compressed model
CUDA_VISIBLE_DEVICES=0 python llama.py /output/path c4 --wbits 4 --groupsize 128 --save llama7b-4bit-128g.pt
# Or save compressed `.safetensors` model
CUDA_VISIBLE_DEVICES=0 python llama.py /output/path c4 --wbits 4 --groupsize 128 --save_safetensors llama7b-4bit-128g.safetensors
# Benchmark generating a 2048 token sequence with the saved model
CUDA_VISIBLE_DEVICES=0 python llama.py /output/path c4 --wbits 4 --groupsize 128 --load llama7b-4bit-128g.pt --benchmark 2048 --check
# Benchmark FP16 baseline, note that the model will be split across all listed GPUs
CUDA_VISIBLE_DEVICES=0,1,2,3,4 python llama.py /output/path c4 --benchmark 2048 --check
# model inference with the saved model
CUDA_VISIBLE_DEVICES=0 python llama_inference.py /output/path --wbits 4 --groupsize 128 --load llama7b-4bit-128g.pt --text "this is llama"
# model inference with the saved model with offload(This is very slow. This is a simple implementation and could be improved with technologies like flexgen(https://github.com/FMInference/FlexGen).
CUDA_VISIBLE_DEVICES=0 python llama_inference_offload.py /output/path --wbits 4 --groupsize 128 --load llama7b-4bit-128g.pt --text "this is llama" --pre_layer 16
It takes about 180 seconds to generate 45 tokens(5->50 tokens) on single RTX3090 based on LLaMa-65B. pre_layer is set to 50.
CUDA Kernels support 2,3,4,8 bits.
Basically, 4-bit quantization is recommended.
This code is based on GPTQ
Thanks to Meta AI for releasing LLaMa, a powerful LLM.