I visualize the result of "spatial transformer network" module of "Improving Pedestrian Attribute Recognition With Weakly-Supervised Multi-Scale Attribute-Specific Localization". I follows visualization method of original paper.
see model/inception.py -> class inceptionnet -> def visualization
- First download rap directory (root 디렉토리에 rap dataset 위치시킴)
- make named "visualization" empty directory in project directory. (root 디렉토리에 visualization이란 이름의 디렉토리 생성)
- After finishing training, you can make visualized input pictures by giving "--visualization=true" option. (training 이후에 model이 'saved_model.pt'라는 이름으로 root 디렉토리에 자동 저장됨. visualization 시에는 저장된 모델을 불러와서 시각화된 이미지파일들을 visualization 디렉토리에 저장함)
Visualization=True option may fill your empty named "visualization" directory
python main.py --approach=inception_iccv --experiment=rap --visualization=True
Below is the description of original code of ICCV19, Improving pedestrian Attribute Recognition with Weakly-Supervised Multi-Scale Attribute-Specific-Localization" Yu can find original code in here (https://github.com/chufengt/iccv19_attribute)
Improving Pedestrian Attribute Recognition With Weakly-Supervised Multi-Scale Attribute-Specific Localization
Code for the paper "Improving Pedestrian Attribute Recognition With Weakly-Supervised Multi-Scale Attribute-Specific Localization", ICCV 2019, Seoul.
Contact: [email protected] or [email protected]
- Python 3.6+
- PyTorch 0.4+
- RAP: http://rap.idealtest.org/
- PETA: http://mmlab.ie.cuhk.edu.hk/projects/PETA.html
- PA-100K: https://github.com/xh-liu/HydraPlus-Net
The original datasets should be processed to match the DataLoader.
We provide the label lists for training and testing.
python main.py --approach=inception_iccv --experiment=rap
python main.py --approach=inception_iccv --experiment=rap -e --resume='model_path'
We provide the pretrained models for reference, the results may slightly different with the values reported in our paper.
Dataset | mA | Link |
---|---|---|
PETA | 86.34 | Model |
RAP | 81.86 | Model |
PA-100K | 80.45 | Model |
If this work is useful to your research, please cite:
@inproceedings{tang2019improving,
title={Improving Pedestrian Attribute Recognition With Weakly-Supervised Multi-Scale Attribute-Specific Localization},
author={Tang, Chufeng and Sheng, Lu and Zhang, Zhaoxiang and Hu, Xiaolin},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={4997--5006},
year={2019}
}