Skip to content

C++ implementation of random forests classification, regression, proximity and variable importance.

License

Notifications You must be signed in to change notification settings

gxf1027/randomforests

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

94 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

      _____                 _                 ______                  _
     |  __ \               | |               |  ____|                | |
     | |__) |__ _ _ __   __| | ___  _ __ ___ | |__ ___  _ __ ___  ___| |_
     |  _  // _` | '_ \ / _` |/ _ \| '_ ` _ \|  __/ _ \| '__/ _ \/ __| __|
     | | \ \ (_| | | | | (_| | (_) | | | | | | | | (_) | | |  __/\__ \ |_
     |_|  \_\__,_|_| |_|\__,_|\___/|_| |_| |_|_|  \___/|_|  \___||___/\__|

random forests

C++ implementation of random forests
详细说明请前往CSDN Random Forests C++实现:细节,使用与实验

  1. 适用于分类和回归, 支持回归的多维输出(multi-target regression)
  2. 支持3种随机性 (Original RF / Near Original / Extra-Trees)
  3. 可计算Proximities,支持离群值计算(raw outlier measure score)
  4. 可计算特征重要性
  5. 支持OpenMP加速
  6. off-the-shelf,即插即用
  7. 提供两种使用方式:命令行与嵌入代码(C风格的C++)
  8. 可保存训练完成的模型至本地,也可从本地读取模型。支持两种格式: Plain Text,文件体积小,适用于所有规模的模型;XML格式,可读性强,但不适用于大模型。

运行 demo

cd randomforests
make
# train classification forest
./rf_train -p 0 -d dataset/classification/pendigits.tra -c demo/config-RF.xml  -o forest.xml
# train regression forest
./rf_train -p 1 -d dataset/regression/Housing_Data_Set-R.txt -c demo/config-RF.xml  -o forest.xml

使用

从本地数据文件读入数据集进行训练,计算oob-error(oob-mse),并保存forest到本地。 本地训练文件格式(dataset files for trainning):

分类(classification)

@totoal_sample_num=19020
@variable_num=10
@class_num=2
1 86.088 36.259 3.4839 0.2359 0.1337 -12.893 -56.746 -4.0291 4.158 372.98
1 76.099 18.755 2.8639 0.3461 0.2209 -90.721 -52.015 -19.577 3.46 271.43
1 62.989 22.083 3.1191 0.2258 0.1167 -85.779 48.038 19.251 7.652 246
1 19.55 10.763 2.3201 0.6077 0.3421 8.3626 -17.38 -10.092 17.368 173.39
0 67.609 26.678 2.632 0.3851 0.2462 -56.63 -57.963 19.806 79.666 227.19
1 24.909 17.432 2.632 0.3944 0.2229 7.1171 -2.3838 -8.6055 37.114 204.79
... ...

回归(regression)

@totoal_sample_num=4177
@variable_num_x=8
@variable_num_y=1
15 1 0.455 0.365 0.095 0.514 0.2245 0.101 0.15 
7 1 0.35 0.265 0.09 0.2255 0.0995 0.0485 0.07 
9 2 0.53 0.42 0.135 0.677 0.2565 0.1415 0.21 
10 1 0.44 0.365 0.125 0.516 0.2155 0.114 0.155 
7 3 0.33 0.255 0.08 0.205 0.0895 0.0395 0.055 
8 3 0.425 0.3 0.095 0.3515 0.141 0.0775 0.12
... ...

(1)分类森林(classification forest)

#include <cmath>
using namespace std;

#include "RandomCLoquatForests.h"
#include "UserInteraction2.h"

int main()
{
	// read training samples if necessary
	char filename[500] = "./DataSet/Classification/pendigits.tra";
	float** data = NULL;
	int* label = NULL;
	Dataset_info_C datainfo;
	InitalClassificationDataMatrixFormFile2(filename, data/*OUT*/, label/*OUT*/, datainfo/*OUT*/);
	// setting random forests parameters
	RandomCForests_info rfinfo;
	rfinfo.datainfo = datainfo;
	rfinfo.maxdepth = 40;
	rfinfo.ntrees = 500;
	rfinfo.mvariables = (int)sqrtf(datainfo.variables_num);
	rfinfo.minsamplessplit = 5;
	rfinfo.randomness = 1;
	// train forest
	LoquatCForest* loquatCForest = NULL;
	TrainRandomForestClassifier(data, label, rfinfo, loquatCForest /*OUT*/, 50);
	float error_rate = 1.f;
	OOBErrorEstimate(data, label, loquatCForest, error_rate /*OUT*/);
	// save RF model, 0:xml, 1:plain text
	SaveRandomClassificationForestModel("Modelfile.xml", loquatCForest, 0);
	// clear the memory allocated for the entire forest
	ReleaseClassificationForest(&loquatCForest);
	// release money: data, label
	for (int i = 0; i < datainfo.samples_num; i++)
   		delete[] data[i];
	delete[] data;
	delete[] label;
	return 0;
}

(2)回归森林(regression forest)

#include "RandomRLoquatForests.h"
#include "UserInteraction2.h"
using namespace std;

int main()
{
	// read training samples if necessary 
	char filename[500] = "./DataSet/Regression/Housing_Data_Set-R.txt"; 
	float** data = NULL;
	float* target = NULL;
	Dataset_info_R datainfo;
	InitalRegressionDataMatrixFormFile2(filename, data /*OUT*/, target /*OUT*/, datainfo /*OUT*/);
	// setting random forests parameters
	RandomRForests_info rfinfo;
	rfinfo.datainfo = datainfo;
	rfinfo.maxdepth = 40;
	rfinfo.ntrees = 200;
	rfinfo.mvariables = (int)(datainfo.variables_num_x / 3.0 + 0.5); 
	rfinfo.minsamplessplit = 5;
	rfinfo.randomness = 1; 
	rfinfo.predictionModel=PredictionModel::constant;
	// train forest
	LoquatRForest* loquatRForest = NULL;
	TrainRandomForestRegressor(data, target, rfinfo, loquatRForest /*OUT*/, false, 20);
	float* mean_squared_error = NULL;
	MSEOnOutOfBagSamples(data, target, loquatRForest, mean_squared_error /*OUT*/);
	delete[] mean_squared_error;
	// save RF model, 0:xml, 1:plain text
	SaveRandomRegressionForestModel("testModelfile-R.xml", loquatRForest, 0);
	// clear the memory
	ReleaseRegressionForest(&loquatRForest);
	// release money: data, target
	for (int i = 0; i < datainfo.samples_num; i++)
		   delete[] data[i];
	delete[] data;
	delete[] target;
	return 0;
}

说明

  • 以上代码仅为主干,实际使用需对函数返回值进行判断。
  • RF结构体对象loquatForest的内存由TrainRandomForestClassifier /TrainRandomForestRegressor 负责分配,由ReleaseClassificationForest /ReleaseRegressionForest 释放内存,用户无需对其分配或者释放
  • OOBErrorEstimate 计算out-of-bag分类错误率,输入参数data, label必须与训练时相同,MSEOnOutOfBagSamples类同
  • InitalClassificationDataMatrixFormFile2/InitalRegressionDataMatrixFormFile2 从本地文件读取数据集。也可以自行准备训练数据,就可以不调用上述函数。

实验

数据集

名称 分类/回归 来源 样本数 特征数 类别数
chess-krvk classification UCI 28056 6 18
Gisette classification UCI 6000/1000 5000 2
ionosphere classification UCI 351 34 2
mnist classification libsvm 60000/10000 780 10
MAGIC_Gamma_Telescope classification UCI 19020 10 2
pendigits classification UCI 7494/3498 16 10
spambase classification UCI 4601 57 2
Sensorless_drive_diagnosis classification UCI 58509 48 11
Smartphone Human Activity Recognition classification UCI 4242 561 6
waveform classification UCI 5000 40 3
satimage classification UCI 6435 36 6
Car Evaluation classification UCI 1728 6 4
sonar classification UCI 208 60 2
abalone regression UCI 4177 8 ——
airfoil_self_noise regression UCI 1503 5 ——
Bike-Sharing1 regression UCI 17379 14 ——
Combined_Cycle_Power_Plant regression UCI 9568 4 ——
elevators regression openml 16599 18 ——
QSAR fish toxicity regression UCI 908 6 ——
Housing regression kaggle 506 13 ——
Parkinsons_Telemonitoring2 regression UCI 5875 19 ——
Superconductivty regression UCI 21263 81 ——
YearPredictionMSD regression Million Song Dataset/
UCI
515345 90 ——
  1. Bike-Sharing: 原数据集去掉第1、2列
  2. Parkinsons_Telemonitoring: 预测输出(output)是2维的。将原数据集第1列(subject number)去掉,UCI网站上记录“Number of Attributes:26”但根据下载的数据集只有22维(包括2维output)

参数
        下一小节表格中“参数”列为 [TreesNum, SplitVariables, MaxDepth, MinSamplesSplit] (randomness均为1,即经典RF)。实验并没有对参数进行调优,而是根据经验选取了个人认为比较合理的参数组合。实验目的一方面是为了验证算法实现的正确性,另一方面也想说明RF对参数敏感度较低(相比SVM)。

结果
        如果没有特殊说明,分类和回归问题的实验结果分别通过out-of-bag分类错误率(%)和out-of-bag 均方误差(Mean Square Error (MSE))来统计,结果运行10次取平均和标准差。可以看到,大多数数据集都采用了默认的参数,也能达到较理想效果。

数据集 参数 oob error(%)/mse 分类/回归
chess-krvk [500, 2*, 40, 5] 16.46636±0.07493 C
Gisette [200, 70*, 40, 5] 2.932105±0.10090(oob)
3.010±0.13333(test set)
C
ionosphere [200, 5*, 40, 5] 6.325±0.213 C
mnist [200, 27*, 40, 5] 3.307166±0.02863(oob)
3.066±0.0665(test set)
C
MAGIC_Gamma_Telescope [200, 3*, 40, 5] 11.8559±0.04347 C
pendigits [200, 4*, 40, 5] 0.880822±0.03428(oob)
3.670668±0.049843(test set)
C
spambase [200, 7*, 40, 5] 4.514335±0.10331 C
satimage [500, 6*, 40, 5] 8.102018±0.057777 C
Sensorless_drive_diagnosis [200, 6*, 40, 5] 0.169049±0.009346 C
Smartphone Human Activity Recognition [200, 23*, 40, 5] 7.39415±0.1159 C
waveform [500, 6*, 40, 5] 14.70493±0.19792 C
Car Evaluation [200,2*,40,5] 1.9456±0.11923 C
sonar [200,7*,40,2] 14.961±0.8646 C
abalone [500, 3#, 40, 5] 4.58272±0.008826 R
airfoil_self_noise [200, 2/5, 40, 5] 3.83345±0.034283 R
Bike-Sharing [500, 5#, 40, 5] 29.7227±0.84333 R
Combined_Cycle_Power_Plant [200, 2/4, 40, 5] 9.94693±0.031153 R
elevators [200, 10/18, 40, 5] 7.1859E-06±3.15264E-08 R
QSAR fish toxicity [200, 2#, 40, 2] 0.7669898±0.003282 R
Housing [200, 4#, 40, 5] 10.077±0.1923 R
Parkinsons_Telemonitoring3 [200,19,40,5] [1.437, 2.523]±[0.01706, 0.03033] R
Superconductivty [200, 27#, 40, 5] 81.4527±0.2781 R
YearPredictionMSD [100, 30#, 40, 50] 83.1219±0.05236 R

*: 表示使用分类森林默认的 $\sqrt{variable_num}$ 作为SplitVariables参数;
#:表示使用回归森林默认的 $\frac {variable_num_x}3$ 作为SplitVariables参数

分析

参数影响(parameters)
        通常RF在默认参数设定下也能取得较理想的效果,通过对参数(见2.2节)调优可以获得更佳的分类/回归效果。一般可以对TreesNum和SplitVariables进行调优。通常认为增加TreesNum会使泛化误差下降(当然也有特例)。如下图,展示了随着树增加,oob error/oob mse呈现下降的趋势。 在这里插入图片描述

        SplitVariables是控制RF随机性的主要参数,当它增加时树之间的关联性也随之增加,而关联性增加会导致分类/回归误差提高[2]。从可调性(Tunability)角度考虑,调节SplitVariables对性能提升的贡献是最大的。而SplitVariables选择默认设定时,通常也能取得不错的效果。下图为pendigits数据集上,不同SplitVariables(样本为16维,TreesNum=500)参数下的分类oob error。 在这里插入图片描述

特征重要性(Variable Importance Measurement)
        特征重要性(variable importance)的评估是RF“自带”的一个特性。采用oob数据的特征随机交换的方法来估计特征重要性。对于数据集"waveform",结果如下图所示,可见后一半特征的重要性几乎为0,这是因为waveform的后19维特征是随机噪声,因此variable importance计算结果符合上述情况。 在这里插入图片描述

        使用mnist手写字符识别数据集训练随机森林分类器,样本数60000,特征数780。RF参数为:随机树 $T=200$,分类候选特征数 $\sqrt{780}$,节点最小样本数5,最大树深度40。将特征重要性的输出值转换为相同分辨率的图像(28x28,780+4,在最后增补了4个0),如下图。可以看到重要特征集中在图像中部,周边的特征重要性非常低,这也符合手写字符训练图像周边像素大多为0的情况。

在这里插入图片描述

多目标回归(Multi-target regression)

        这里多目标指的是回归目标是多维的,一般称为multivariate regression或者multi-target regression。可以将多维目标分解为多个单独的回归问题,即可以对每一维输出输出单独训练一个模型,那么输出有 $N$ 维就要训练 $N$ 个随机森林模型,预测时也要获取多个随机森林的输出。使用随机森林也可以直接对多维输出(多目标)进行训练,这里也使用这种方法对多维输出进行预测。

        使用Tetuan-City-power-consumption数据集来进行试验,原始数据集是通过时间、温度、湿度、风速等6个变量来预测城市3个配电网的能源消耗,即输入6维,输出3维。由于“时间”变量难以使用,所以分解为[minute,hour,day,month,weekday,weekofyear] 6个变量,加上原始的5个气象变量,形成新的11维输入。RF参数为[200, 3#, 60, 2](参数含义见4.2节)。由于输出具有明确物理含义,且都是正数,衡量回归准备度的指标不再使用oob-mse,而是使用oob样本的平均偏离度 $\frac {|t_{predict}-t|}{t}$ 。下图反映了当RF中随机树数量增加时,三个输出维度的平均偏离度变化。可以看到随着随机树增加,偏离度呈下降趋势,基本都在200颗树时达到<1.8%的回归准确度。 在这里插入图片描述

About

C++ implementation of random forests classification, regression, proximity and variable importance.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published