Skip to content

Commit

Permalink
support older matlab versions (avoid using matlab arithmetic expands)
Browse files Browse the repository at this point in the history
  • Loading branch information
hagaygarty committed Dec 31, 2018
1 parent 9bc9c3d commit 3521b31
Show file tree
Hide file tree
Showing 6 changed files with 206 additions and 10 deletions.
92 changes: 92 additions & 0 deletions Demo/MNIST/Logs/Console_31-12-2018_10-53-22.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
Dataset info - test: 10000, train: 60000, first sample size:=28 28, var=6352.04, min=0.000000, max=255.000000
Verifying backProp..
Checking layer 1 - input
Checking layer 2 - conv {Operation terminated by user during <a href="matlab:matlab.internal.language.introspective.errorDocCallback('feedForward', 'D:\mdCNN_git\mdCNN\feedForward.m', 55)" style="font-weight:bold">feedForward</a> (<a href="matlab: opentoline('D:\mdCNN_git\mdCNN\feedForward.m',55,0)">line 55</a>)


In <a href="matlab:matlab.internal.language.introspective.errorDocCallback('verifyBackProp', 'D:\mdCNN_git\mdCNN\verifyBackProp.m', 168)" style="font-weight:bold">verifyBackProp</a> (<a href="matlab: opentoline('D:\mdCNN_git\mdCNN\verifyBackProp.m',168,0)">line 168</a>)
netPdW = feedForward(netPdW, input, 0);

In <a href="matlab:matlab.internal.language.introspective.errorDocCallback('Train', 'D:\mdCNN_git\Training\Train.m', 39)" style="font-weight:bold">Train</a> (<a href="matlab: opentoline('D:\mdCNN_git\Training\Train.m',39,0)">line 39</a>)
verifyBackProp(net);
}
demoMnist
multi dimentional CNN , Hagay Garty 2016 | [email protected]
Initializing network..
Initializing layer 1 - input
Initializing layer 2 - conv
Initializing layer 3 - conv
[Warning: Layer 3 input plus pad is 28 28 1 , not a power of 2. May reduce speed]
[> In <a href="matlab:matlab.internal.language.introspective.errorDocCallback('initNetWeight', 'D:\mdCNN_git\mdCNN\initNetWeight.m', 204)" style="font-weight:bold">initNetWeight</a> (<a href="matlab: opentoline('D:\mdCNN_git\mdCNN\initNetWeight.m',204,0)">line 204</a>)
In <a href="matlab:matlab.internal.language.introspective.errorDocCallback('CreateNet', 'D:\mdCNN_git\mdCNN\CreateNet.m', 32)" style="font-weight:bold">CreateNet</a> (<a href="matlab: opentoline('D:\mdCNN_git\mdCNN\CreateNet.m',32,0)">line 32</a>)
In <a href="matlab:matlab.internal.language.introspective.errorDocCallback('demoMnist', 'D:\mdCNN_git\Demo\MNIST\demoMnist.m', 5)" style="font-weight:bold">demoMnist</a> (<a href="matlab: opentoline('D:\mdCNN_git\Demo\MNIST\demoMnist.m',5,0)">line 5</a>)]
Initializing layer 4 - batchNorm
Initializing layer 5 - fc
Initializing layer 6 - fc
Initializing layer 7 - softmax
Initializing layer 8 - output
<strong>trainLoopCount</strong><strong> testImageNum</strong><strong> batchNum</strong><strong> ni_initial</strong><strong> ni_final</strong><strong> noImprovementTh</strong><strong> momentum</strong><strong> constInitWeight</strong><strong> lambda</strong><strong> testOnData</strong><strong> addBackround</strong><strong> testOnNull</strong><strong> augmentImage</strong><strong> augmentParams</strong><strong> centralizeImage</strong><strong> cropImage</strong><strong> flipImage</strong><strong> useRandomPatch</strong><strong> testNumPatches</strong><strong> selevtivePatchVarTh</strong><strong> testOnMiddlePatchOnly</strong><strong> normalizeNetworkInput</strong><strong> randomizeTrainingSamples</strong>
<strong>______________</strong> <strong>____________</strong> <strong>________</strong> <strong>__________</strong> <strong>________</strong> <strong>_______________</strong> <strong>________</strong> <strong>_______________</strong> <strong>______</strong> <strong>__________</strong> <strong>____________</strong> <strong>__________</strong> <strong>____________</strong> <strong>_____________</strong> <strong>_______________</strong> <strong>_________</strong> <strong>_________</strong> <strong>______________</strong> <strong>______________</strong> <strong>___________________</strong> <strong>_____________________</strong> <strong>_____________________</strong> <strong>________________________</strong>

2048 1024 16 0.1 0.0005 8 0 NaN 0 0 0 0 0 [1x1 struct] 0 0 0 0 1 0 0 1 0

<strong>storeMinLossNet</strong><strong> verifyBP</strong><strong> iter</strong><strong> samplesLearned</strong><strong> maxsucessRate</strong><strong> noImprovementCount</strong><strong> minLoss</strong><strong> improvementRefLoss</strong><strong> endSeed </strong>
<strong>_______________</strong> <strong>________</strong> <strong>____</strong> <strong>______________</strong> <strong>_____________</strong> <strong>__________________</strong> <strong>_______</strong> <strong>__________________</strong> <strong>____________</strong>

0 1 0 0 0 0 Inf Inf [1x1 struct]

Layer 1: Activation=Unit, dActivation=dUnit
<strong>type </strong><strong> sizeFm </strong><strong> numFm</strong><strong> numWeights</strong><strong> Activation </strong><strong> dActivation </strong><strong> sizeOut </strong><strong> dropOut</strong>
<strong>_____</strong> <strong>______________</strong> <strong>_____</strong> <strong>__________</strong> <strong>_____________________</strong> <strong>_____________________</strong> <strong>____________</strong> <strong>_______</strong>

input 28 28 1 1 0 [1x1 function_handle] [1x1 function_handle] [1x4 double] 1

Layer 2: Activation=Sigmoid, dActivation=dSigmoid
<strong>type</strong><strong> numFm</strong><strong> kernel </strong><strong> pad </strong><strong> dropOut</strong><strong> Activation </strong><strong> dActivation </strong><strong> inputDim</strong><strong> stride </strong><strong> pooling </strong><strong> sizeFm </strong><strong> numWeights</strong><strong> indexesStride </strong><strong> sizeOut </strong>
<strong>____</strong> <strong>_____</strong> <strong>___________</strong> <strong>___________</strong> <strong>_______</strong> <strong>_____________________</strong> <strong>_____________________</strong> <strong>________</strong> <strong>___________</strong> <strong>___________</strong> <strong>______________</strong> <strong>__________</strong> <strong>_____________________________________</strong> <strong>____________</strong>

conv 12 5 5 1 2 2 0 1 [1x1 function_handle] [1x1 function_handle] 2 1 1 1 1 1 1 28 28 1 312 [1x28 double] [1x28 double] [1] [1x4 double]

Layer 3: Activation=Sigmoid, dActivation=dSigmoid
<strong>type</strong><strong> numFm</strong><strong> kernel </strong><strong> dropOut</strong><strong> Activation </strong><strong> dActivation </strong><strong> inputDim</strong><strong> stride </strong><strong> pad </strong><strong> pooling </strong><strong> sizeFm </strong><strong> numWeights</strong><strong> indexesStride </strong><strong> sizeOut </strong>
<strong>____</strong> <strong>_____</strong> <strong>______________</strong> <strong>_______</strong> <strong>_____________________</strong> <strong>_____________________</strong> <strong>________</strong> <strong>___________</strong> <strong>___________</strong> <strong>___________</strong> <strong>______________</strong> <strong>__________</strong> <strong>_____________________________________</strong> <strong>____________</strong>

conv 24 13 13 1 1 [1x1 function_handle] [1x1 function_handle] 2 1 1 1 0 0 0 1 1 1 16 16 1 48696 [1x16 double] [1x16 double] [1] [1x4 double]

Layer 4: Activation=Unit, dActivation=dUnit
<strong> type </strong><strong> numFm</strong><strong> EPS </strong><strong> niFactor</strong><strong> Activation </strong><strong> dActivation </strong><strong> initGamma</strong><strong> initBeta</strong><strong> numWeights</strong><strong> alpha </strong><strong> dropOut</strong><strong> sizeFm </strong><strong> sizeOut </strong>
<strong>_________</strong> <strong>_____</strong> <strong>_____</strong> <strong>________</strong> <strong>_____________________</strong> <strong>_____________________</strong> <strong>_________</strong> <strong>________</strong> <strong>__________</strong> <strong>_______</strong> <strong>_______</strong> <strong>______________</strong> <strong>____________</strong>

batchNorm 24 1e-05 1 [1x1 function_handle] [1x1 function_handle] 1 0 12288 0.03125 1 16 16 1 [1x4 double]

Layer 5: Activation=Sigmoid, dActivation=dSigmoid
<strong>type</strong><strong> numFm</strong><strong> dropOut</strong><strong> Activation </strong><strong> dActivation </strong><strong> sizeFm</strong><strong> numWeights</strong><strong> sizeOut </strong>
<strong>____</strong> <strong>_____</strong> <strong>_______</strong> <strong>_____________________</strong> <strong>_____________________</strong> <strong>______</strong> <strong>__________</strong> <strong>________</strong>

fc 128 0.8 [1x1 function_handle] [1x1 function_handle] 1 7.8656e+05 1 128

Layer 6: Activation=Sigmoid, dActivation=dSigmoid
<strong>type</strong><strong> numFm</strong><strong> dropOut</strong><strong> Activation </strong><strong> dActivation </strong><strong> sizeFm</strong><strong> numWeights</strong><strong> sizeOut</strong>
<strong>____</strong> <strong>_____</strong> <strong>_______</strong> <strong>_____________________</strong> <strong>_____________________</strong> <strong>______</strong> <strong>__________</strong> <strong>_______</strong>

fc 10 1 [1x1 function_handle] [1x1 function_handle] 1 1290 1 10

Layer 7: Activation=Unit, dActivation=dUnit
<strong> type </strong><strong> numFm</strong><strong> Activation </strong><strong> dActivation </strong><strong> dropOut</strong><strong> sizeFm</strong><strong> numWeights</strong><strong> sizeOut</strong>
<strong>_______</strong> <strong>_____</strong> <strong>_____________________</strong> <strong>_____________________</strong> <strong>_______</strong> <strong>______</strong> <strong>__________</strong> <strong>_______</strong>

softmax 10 [1x1 function_handle] [1x1 function_handle] 1 1 0 1 10

Layer 8: Activation=Unit, dActivation=dUnit
<strong> type </strong><strong> lossFunc </strong><strong> costFunc </strong><strong> sizeFm</strong><strong> numFm</strong><strong> sizeOut</strong><strong> Activation </strong><strong> dActivation </strong><strong> numWeights</strong>
<strong>______</strong> <strong>_____________________</strong> <strong>_____________________</strong> <strong>______</strong> <strong>_____</strong> <strong>_______</strong> <strong>_____________________</strong> <strong>_____________________</strong> <strong>__________</strong>

output [1x1 function_handle] [1x1 function_handle] 1 10 1 10 [1x1 function_handle] [1x1 function_handle] 0

Network properties:

<strong>skipLastLayerErrorCalc</strong><strong> numLayers</strong><strong> version</strong><strong> sources </strong><strong> numWeights</strong><strong> numOutputs</strong>
<strong>______________________</strong> <strong>_________</strong> <strong>_______</strong> <strong>____________</strong> <strong>__________</strong> <strong>__________</strong>

1 8 2.3 [4x1 struct] 8.4915e+05 10

Loading

0 comments on commit 3521b31

Please sign in to comment.