Skip to content

Commit

Permalink
add: 1 arXiv paper
Browse files Browse the repository at this point in the history
  • Loading branch information
jindongwang committed Dec 19, 2017
1 parent 2aacd73 commit 5c3481a
Show file tree
Hide file tree
Showing 2 changed files with 9 additions and 10 deletions.
16 changes: 6 additions & 10 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,8 @@ _ _ _

[迁移学习文章 Awesome transfer learning papers](https://github.com/jindongwang/transferlearning/tree/master/doc/awesome_paper.md)

- 20171218 假设target domain中的class是包含在source domain中,然后进行选择性的对抗学习:[Partial Transfer Learning with Selective Adversarial Networks](https://arxiv.org/abs/1707.07901)

- 20171216 当target domain的数据不可用时,如何用相关domain的数据进行辅助学习?[Zero-Shot Deep Domain Adaptation](https://arxiv.org/abs/1707.01922)

- 20171201 第一篇将Tensor与domain adaptation结合的文章:[When Unsupervised Domain Adaptation Meets Tensor Representations](http://openaccess.thecvf.com/content_iccv_2017/html/Lu_When_Unsupervised_Domain_ICCV_2017_paper.html) | [我的解读](https://zhuanlan.zhihu.com/p/31834244)
Expand All @@ -36,13 +38,7 @@ _ _ _

- 201711 一个很好的深度学习+迁移学习的实践教程,有代码有数据,可以直接上手:[基于深度学习和迁移学习的识花实践](https://cosx.org/2017/10/transfer-learning/)

- 201710 [Domain Adaptation in Computer Vision Applications](https://books.google.com.hk/books?id=7181DwAAQBAJ&pg=PA95&lpg=PA95&dq=Learning+Domain+Invariant+Embeddings+by+Matching%E2%80%A6&source=bl&ots=fSc1yvZxU3&sig=XxmGZkrfbJ2zSsJcsHhdfRpjaqk&hl=zh-CN&sa=X&ved=0ahUKEwjzvODqkI3XAhUCE5QKHYStBywQ6AEIRDAE#v=onepage&q=Learning%20Domain%20Invariant%20Embeddings%20by%20Matching%E2%80%A6&f=false) 里面收录了若干篇domain adaptation的文章,可以大概看看。

- 201710 Google最新论文:[Learning Transferable Architectures for Scalable Image Recognition](https://arxiv.org/abs/1707.07012)

- 20170812 香港科技大学的最新文章:[Learning To Transfer](https://arxiv.org/abs/1708.05629),将迁移学习和增量学习的思想结合起来,为迁移学习的发展开辟了一个崭新的研究方向。[我的解读](https://zhuanlan.zhihu.com/p/28888554)


[更多...]((https://github.com/jindongwang/transferlearning/tree/master/doc/awesome_paper.md))

- - -

Expand Down Expand Up @@ -92,11 +88,11 @@ _ _ _
**全部列表以及代表工作性见[这里](https://github.com/jindongwang/transferlearning/blob/master/doc/scholar_TL.md)**

- [Qiang Yang](http://www.cs.ust.hk/~qyang/):中文名杨强。香港科技大学计算机系主任,教授,大数据中心主任。迁移学习领域世界性专家。IEEE/AAAI/IAPR/AAAS fellow。[[Google scholar](https://scholar.google.com/citations?user=1LxWZLQAAAAJ&hl=zh-CN)]
- [Sinno Jialin Pan](http://www.ntu.edu.sg/home/sinnopan/):杨强的学生,香港科技大学博士,现任新加坡南阳理工大学助理教授。迁移学习领域代表性综述A survey on transfer learning的第一作者(Qiang Yang是二作)。[[Google scholar](https://scholar.google.com/citations?user=P6WcnfkAAAAJ&hl=zh-CN)]
- [Wenyuan Dai](https://scholar.google.com.sg/citations?user=AGR9pP0AAAAJ&hl=zh-CN):中文名戴文渊,上海交通大学硕士,现任第四范式人工智能创业公司CEO。迁移学习领域著名的牛人,每篇论文引用量巨大,在顶级会议上发表多篇高水平文章。
- [Sinno Jialin Pan](http://www.ntu.edu.sg/home/sinnopan/):杨强的学生,香港科技大学博士,现任新加坡南洋理工大学助理教授。迁移学习领域代表性综述A survey on transfer learning的第一作者(Qiang Yang是二作)。[[Google scholar](https://scholar.google.com/citations?user=P6WcnfkAAAAJ&hl=zh-CN)]
- [Wenyuan Dai](https://scholar.google.com.sg/citations?user=AGR9pP0AAAAJ&hl=zh-CN):中文名戴文渊,上海交通大学硕士,现任第四范式人工智能创业公司CEO。迁移学习领域著名的牛人,在顶级会议上发表多篇高水平文章,每篇论文引用量巨大
- [Lixin Duan](http://www.lxduan.info/):中文名段立新,新加坡南洋理工大学博士,现就职于电子科技大学,教授。
- [Fuzhen Zhuang](http://www.intsci.ac.cn/users/zhuangfuzhen/):中文名庄福振,中科院计算所博士,现任中科院计算所副研究员。[[Google scholar](https://scholar.google.com/citations?user=klJBYrAAAAAJ&hl=zh-CN&oi=ao)]
- [Mingsheng Long](http://ise.thss.tsinghua.edu.cn/~mlong/):中文名龙明盛,清华大学博士,现任清华大学助理研究员[[Google scholar](https://scholar.google.com/citations?view_op=search_authors&mauthors=mingsheng+long&hl=zh-CN&oi=ao)]
- [Mingsheng Long](http://ise.thss.tsinghua.edu.cn/~mlong/):中文名龙明盛,清华大学博士,现任清华大学助理教授、博士生导师[[Google scholar](https://scholar.google.com/citations?view_op=search_authors&mauthors=mingsheng+long&hl=zh-CN&oi=ao)]
_ _ _

### 5.迁移学习相关的硕博士论文
Expand Down
3 changes: 3 additions & 0 deletions doc/awesome_paper.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,9 @@ Let's read some awesome transfer learning / domain adaptation papers!

### 论文推荐:

- 20171218 arXiv [Partial Transfer Learning with Selective Adversarial Networks](https://arxiv.org/abs/1707.07901)
- 假设target domain中的class是包含在source domain中,然后进行选择性的对抗学习

- 20171216 arXiv [Zero-Shot Deep Domain Adaptation](https://arxiv.org/abs/1707.01922)
- 当target domain的数据不可用时,如何用相关domain的数据进行辅助学习?

Expand Down

0 comments on commit 5c3481a

Please sign in to comment.