Skip to content

Using SageMaker and LoRA to fine-tune the Stable Diffusion model and generate fashion images

Notifications You must be signed in to change notification settings

hajekim/musinsaigo

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MUSINSA-IGO (MUSINSA fashion Image Generative Operator)


MUSINSA-IGO 2.0 is a text-to-image generative model that fine-tuned Stable Diffusion XL 1.0 with LoRA using street snaps downloaded from the website of Musinsa, a Korean fashion commerce company. This is very useful for generating fashion images.

Examples


assets-01 assets-02

Notes


  • For example, the recommended prompt template is shown below.

Prompt: RAW photo, fashion photo of subject, (high detailed skin:1.2), 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3

Negative Prompt: (deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime:1.4), text, close up, cropped, out of frame, the worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck

Usage


import torch
from diffusers import DiffusionPipeline


def make_prompt(prompt: str) -> str:
    prompt_prefix = "RAW photo"
    prompt_suffix = "(high detailed skin:1.2), 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3"
    return ", ".join([prompt_prefix, prompt, prompt_suffix]).strip()


def make_negative_prompt(negative_prompt: str) -> str:
    negative_prefix = "(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime:1.4), \
    text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, \
    extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, \
    bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, \
    extra arms, extra legs, fused fingers, too many fingers, long neck"

    return (
        ", ".join([negative_prefix, negative_prompt]).strip()
        if len(negative_prompt) > 0
        else negative_prefix
    )


device = "cuda" if torch.cuda.is_available() else "cpu"

model_id = "youngmki/musinsaigo-2.0"
pipe = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
)
pipe = pipe.to(device)
pipe.load_lora_weights(model_id)

# Write your prompt here.
PROMPT = "a korean woman wearing a white t - shirt and black pants with a bear on it"  
NEGATIVE_PROMPT = ""

# If you're not using a refiner
image = pipe(
    prompt=make_prompt(PROMPT),
    height=1024,
    width=768,
    num_inference_steps=50,
    guidance_scale=7.5,
    negative_prompt=make_negative_prompt(NEGATIVE_PROMPT),
    cross_attention_kwargs={"scale": 0.75},
).images[0]

# If you're using a refiner
refiner = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-refiner-1.0",
    text_encoder_2=pipe.text_encoder_2,
    vae=pipe.vae,
    torch_dtype=torch.float16,
)

image = pipe(
    prompt=make_prompt(PROMPT),
    height=1024,
    width=768,
    num_inference_steps=50,
    guidance_scale=7.5,
    negative_prompt=make_negative_prompt(NEGATIVE_PROMPT),
    output_type="latent",
    cross_attention_kwargs={"scale": 0.75},
)["images"]

generated_images = refiner(
    prompt=make_prompt(PROMPT),
    image=image,
    num_inference_steps=50,
)["images"]

image.save("test.png")

test

References


About

Using SageMaker and LoRA to fine-tune the Stable Diffusion model and generate fashion images

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 68.5%
  • Python 31.2%
  • Other 0.3%