Segmentation models with pretrained backbones
Backbone model | Name | Weights | UNet | FPN |
---|---|---|---|---|
VGG16 | vgg16 |
imagenet |
+ | + |
VGG19 | vgg19 |
imagenet |
+ | + |
ResNet18 | resnet18 |
imagenet |
+ | + |
ResNet34 | resnet34 |
imagenet |
+ | + |
ResNet50 | resnet50 |
imagenet imagenet11k-places365ch |
+ | + |
ResNet101 | resnet101 |
imagenet |
+ | + |
ResNet152 | resnet152 |
imagenet imagenet11k |
+ | + |
ResNeXt50 | resnext50 |
imagenet |
+ | + |
ResNeXt101 | resnext101 |
imagenet |
+ | + |
DenseNet121 | densenet121 |
imagenet |
+ | + |
DenseNet169 | densenet169 |
imagenet |
+ | + |
DenseNet201 | densenet201 |
imagenet |
+ | + |
Inception V3 | inceptionv3 |
imagenet |
+ | + |
Inception ResNet V2 | inceptionresnetv2 |
imagenet |
+ | + |
$ pip install segmentation_models
$ git clone https://github.com/qubvel/segmentation_models.git
$ cd segmentation_models
$ git submodule update --init --recursive
Train Unet model:
from segmentation_models import Unet
# prepare data
x, y = ...
# prepare model
model = Unet(backbone_name='resnet34', encoder_weigths='imagenet')
model.compile('Adam', 'binary_crossentropy', ['binary_accuracy'])
# train model
model.fit(x, y)
Train FPN model:
from segmentation_models import FPN
model = FPN(backbone_name='resnet34', encoder_weigths='imagenet')
Freeze encoder weights for fine-tuning during first epochs of training:
from segmentation_models import FPN
from segmentation_models.utils import set_trainable
model = FPN(backbone_name='resnet34', encoder_weigths='imagenet', freeze_encoder=True)
model.compile('Adam', 'binary_crossentropy', ['binary_accuracy'])
# pretrain model decoder
model.fit(x, y, epochs=2)
# release all layers for training
set_trainable(model) # set all layers trainable and recompile model
# continue training
model.fit(x, y, epochs=100)
- Update Unet API
- Update FPN API
- Add Linknet models
- Add PSP models
- Add DPN backbones