OJL (Open Jazari Library) is a comprehensive framework designed for JVM languages, specializing in:
- Matrix Operations
- Data Visualization
- Image Processing
- Computer Vision
- Machine Learning
- Deep Learning
- JAZO Labeling Tool -- Classic Bounding Box -- Classic Polygon -- Spline Based Lane Labeling -- [Future Version] Automatic Labeling (SAM Based)
Ataş, M. (2016). Open Cezeri Library: A novel java based matrix and computer vision framework. Computer Applications in Engineering Education, 24(5), 736-743.
- Full JVM language compatibility
- High-performance matrix computations
- Advanced visualization techniques
- Integrated machine learning tools
- Comprehensive image processing capabilities
<dependency>
<groupId>com.github.hakmesyo</groupId>
<artifactId>ojl</artifactId>
<version>1.0.0</version>
</dependency>
implementation 'com.github.hakmesyo:ojl:1.0.0'
int min = -200;
int max = 200;
CMatrix cm1 = CMatrix.getInstance()
.range(min, max)
.perlinNoise(0.01f);
CMatrix cm2 = CMatrix.getInstance()
.range(min, max)
.perlinNoise(0.022f);
CMatrix cm = cm1.cat(1, cm2);
cm.plot(CMatrix.getInstance().range(min, max).toFloatArray1D());
TFigureAttribute attr = new TFigureAttribute(
"Lane Detection Performance Evaluation",
new String[]{"Accuracy","Groups"},
new String[]{"Epoch-10","Epoch-20","Epoch-30","Epoch-40","Epoch-50"},
new String[]{"SCNN","U-Net","ENet","ENet-SAD"}
);
CMatrix cm = CMatrix.getInstance()
.rand(4, 5, -150f, 151f)
.bar(attr);
Comprehensive documentation available at OJL Documentation
We welcome contributions! Please read our Contribution Guidelines
- Project Owner: Prof. Dr. Musa Ataş
- Email: [email protected]
- GitHub: https://github.com/hakmesyo
- Project Link: https://github.com/hakmesyo/OJL
Distributed under Apache 2.0 License. See LICENSE
for more information.
Note: OJL is continuously evolving. Your feedback and contributions are valuable! 🌈