Skip to content

Code for CVPR'23 paper "Local Connectivity-Based Density Estimation for Face Clustering".

License

Notifications You must be signed in to change notification settings

hars-singh/LCE-PCENet

 
 

Repository files navigation

Local Connectivity-Based Density Estimation for Face Clustering

This repo contains an official implementation for CVPR'23 paper "Local Connectivity-Based Density Estimation for Face Clustering".

Introduction

The proposed clustering method employs density-based clustering, which maintains edges that have higher density. For this purpose, we propose a reliable density estimation algorithm based on local connectivity between K nearest neighbors (KNN). We effectively exclude negative pairs from the KNN graph based on the reliable density while maintaining sufficient positive pairs. Furthermore, we develop a pairwise connectivity estimation network to predict the connectivity of the selected edges.

Requirements

  • Python = 3.8.5
  • Pytorch = 1.10.2
conda install pytorch==1.10.2 cudatoolkit=11.3 -c pytorch
pip install -r requirements.txt

Dataset

The data directory is constructed as follows:

data
  ├── ms1m
  |    ├── features
  |    |    ├── part1_test.bin
  |    |    ├── ...
  |    |    └── part9.test.bin
  |    ├── labels
  |    |    ├── part1_test.meta
  |    |    ├── ...
  |    |    └── part9.test.meta
  |    └── knns
  |         ├── part1_test
  |         |    └── faiss_k_80.npz
  |         ├── ...
  |         └── part9_test
  |              └── faiss_k_80.npz
  ├── deepfashion
  |    ├── features
  |    |    └── deepfashion_test.bin
  |    ├── labels
  |    |    └── deepfashion_test.meta
  |    └── knns
  |         └── deepfashion_test
  |              └── deepfashion_k40.npz
  └── ijb-b
       ├── 512.fea.npy
       ├── 512.labels.npy
       ├── knn.graph.512.bf.npy
       └── ...

We have used the data from following repositories.

For DeepFashion dataset, we construct kNN graph using faiss.

Run

To test for each dataset, simply run shell scripts.

sh inference_{dataset_name}.sh

Results on MS-Celeb-1M

1, 3, 5, 7, 9 mean different subset of the clustering benchmark. Detailed settings are on our paper.

Pairwise F-Score

Methods 1 3 5 7 9
CDP 75.02 70.75 69.51 68.62 68.06
L-GCN 78.68 75.83 74.29 73.71 72.99
LTC 85.66 82.41 80.32 78.98 77.87
GCN(V+E) 87.93 84.04 82.10 80.45 79.30
Clusformer 88.20 84.60 82.79 81.03 79.91
STAR-FC 91.97 88.28 86.17 84.70 83.46
Pair-Cls 90.67 86.91 85.06 83.51 82.41
Ada-NETS 92.79 89.33 87.50 85.40 83.99
Chen et al. 93.22 90.51 89.09 87.93 86.94
Ours 94.64 91.90 90.27 88.69 87.35

BCubed F-Score

Methods 1 3 5 7 9
CDP 78.70 75.82 74.58 73.62 72.92
L-GCN 84.37 81.61 80.11 79.33 78.60
LTC 85.52 83.01 81.10 79.84 78.86
GCN(V+E) 86.09 82.84 81.24 80.09 79.25
Clusformer 87.17 84.05 82.30 80.51 79.95
STAR-FC - 86.26 84.13 82.63 81.47
Pair-Cls 89.54 86.25 84.55 83.49 82.40
Ada-NETS 91.40 87.98 86.03 84.48 83.28
Chen et al. 92.18 89.43 88.00 86.92 86.06
Ours 93.36 90.78 89.28 88.15 87.28

Results on IJB-B

$F_{512}, F_{1024}, F_{1845}$ mean different subset of the clustering benchmark. Detailed settings are on our paper.

Pairwise F-Score

Methods $F_{512}$ $F_{1024}$ $F_{1845}$
Pair-Cls 84.4 83.3 82.7
Chen et al. 80.8 73.2 59.1
Ours 93.0 92.7 90.8

BCubed F-Score

Methods $F_{512}$ $F_{1024}$ $F_{1845}$
L-GCN 83.3 83.3 81.4
DANet 83.4 83.3 82.8
Chen et al. 79.6 78.1 76.7
Ours 85.4 85.2 84.8

Results on DeepFashion

Methods Pairwise F-Score BCubed F-Score
CDP 28.28 57.83
L-GCN 28.85 58.91
LTC 29.14 59.11
GCN(V+E) 38.47 60.06
Pair-Cls 37.67 62.17
Ada-NETS 39.30 61.05
Chen et al. 40.91 63.61
Ours 41.76 64.56

Acknowledgement

Some codes are based on the publicly available codebase https://github.com/yl-1993/learn-to-cluster.

Citation

@inproceedings{shin2023local,
  title={Local Connectivity-Based Density Estimation for Face Clustering},
  author={Shin, Junho and Lee, Hyo-Jun and Kim, Hyunseop and Baek, Jong-Hyeon and Kim, Daehyun and Koh, Yeong Jun},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2023}
}

About

Code for CVPR'23 paper "Local Connectivity-Based Density Estimation for Face Clustering".

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 93.6%
  • Shell 6.4%