This repo contains an official implementation for CVPR'23 paper "Local Connectivity-Based Density Estimation for Face Clustering".
The proposed clustering method employs density-based clustering, which maintains edges that have higher density. For this purpose, we propose a reliable density estimation algorithm based on local connectivity between K nearest neighbors (KNN). We effectively exclude negative pairs from the KNN graph based on the reliable density while maintaining sufficient positive pairs. Furthermore, we develop a pairwise connectivity estimation network to predict the connectivity of the selected edges.
- Python = 3.8.5
- Pytorch = 1.10.2
conda install pytorch==1.10.2 cudatoolkit=11.3 -c pytorch
pip install -r requirements.txt
The data directory is constructed as follows:
data
├── ms1m
| ├── features
| | ├── part1_test.bin
| | ├── ...
| | └── part9.test.bin
| ├── labels
| | ├── part1_test.meta
| | ├── ...
| | └── part9.test.meta
| └── knns
| ├── part1_test
| | └── faiss_k_80.npz
| ├── ...
| └── part9_test
| └── faiss_k_80.npz
├── deepfashion
| ├── features
| | └── deepfashion_test.bin
| ├── labels
| | └── deepfashion_test.meta
| └── knns
| └── deepfashion_test
| └── deepfashion_k40.npz
└── ijb-b
├── 512.fea.npy
├── 512.labels.npy
├── knn.graph.512.bf.npy
└── ...
We have used the data from following repositories.
- [MS-Celeb-1M, DeepFashion] https://github.com/yl-1993/learn-to-cluster
- [CASIA/IJB-B] https://github.com/Zhongdao/gcn_clustering
For DeepFashion dataset, we construct kNN graph using faiss.
To test for each dataset, simply run shell scripts.
sh inference_{dataset_name}.sh
1, 3, 5, 7, 9 mean different subset of the clustering benchmark. Detailed settings are on our paper.
Methods | 1 | 3 | 5 | 7 | 9 |
---|---|---|---|---|---|
CDP | 75.02 | 70.75 | 69.51 | 68.62 | 68.06 |
L-GCN | 78.68 | 75.83 | 74.29 | 73.71 | 72.99 |
LTC | 85.66 | 82.41 | 80.32 | 78.98 | 77.87 |
GCN(V+E) | 87.93 | 84.04 | 82.10 | 80.45 | 79.30 |
Clusformer | 88.20 | 84.60 | 82.79 | 81.03 | 79.91 |
STAR-FC | 91.97 | 88.28 | 86.17 | 84.70 | 83.46 |
Pair-Cls | 90.67 | 86.91 | 85.06 | 83.51 | 82.41 |
Ada-NETS | 92.79 | 89.33 | 87.50 | 85.40 | 83.99 |
Chen et al. | 93.22 | 90.51 | 89.09 | 87.93 | 86.94 |
Ours | 94.64 | 91.90 | 90.27 | 88.69 | 87.35 |
Methods | 1 | 3 | 5 | 7 | 9 |
---|---|---|---|---|---|
CDP | 78.70 | 75.82 | 74.58 | 73.62 | 72.92 |
L-GCN | 84.37 | 81.61 | 80.11 | 79.33 | 78.60 |
LTC | 85.52 | 83.01 | 81.10 | 79.84 | 78.86 |
GCN(V+E) | 86.09 | 82.84 | 81.24 | 80.09 | 79.25 |
Clusformer | 87.17 | 84.05 | 82.30 | 80.51 | 79.95 |
STAR-FC | - | 86.26 | 84.13 | 82.63 | 81.47 |
Pair-Cls | 89.54 | 86.25 | 84.55 | 83.49 | 82.40 |
Ada-NETS | 91.40 | 87.98 | 86.03 | 84.48 | 83.28 |
Chen et al. | 92.18 | 89.43 | 88.00 | 86.92 | 86.06 |
Ours | 93.36 | 90.78 | 89.28 | 88.15 | 87.28 |
Methods | |||
---|---|---|---|
Pair-Cls | 84.4 | 83.3 | 82.7 |
Chen et al. | 80.8 | 73.2 | 59.1 |
Ours | 93.0 | 92.7 | 90.8 |
Methods | |||
---|---|---|---|
L-GCN | 83.3 | 83.3 | 81.4 |
DANet | 83.4 | 83.3 | 82.8 |
Chen et al. | 79.6 | 78.1 | 76.7 |
Ours | 85.4 | 85.2 | 84.8 |
Methods | Pairwise F-Score | BCubed F-Score |
---|---|---|
CDP | 28.28 | 57.83 |
L-GCN | 28.85 | 58.91 |
LTC | 29.14 | 59.11 |
GCN(V+E) | 38.47 | 60.06 |
Pair-Cls | 37.67 | 62.17 |
Ada-NETS | 39.30 | 61.05 |
Chen et al. | 40.91 | 63.61 |
Ours | 41.76 | 64.56 |
Some codes are based on the publicly available codebase https://github.com/yl-1993/learn-to-cluster.
@inproceedings{shin2023local,
title={Local Connectivity-Based Density Estimation for Face Clustering},
author={Shin, Junho and Lee, Hyo-Jun and Kim, Hyunseop and Baek, Jong-Hyeon and Kim, Daehyun and Koh, Yeong Jun},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2023}
}