forked from Melody-Zhou/tensorRT_Pro-YOLOv8
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
ee48c52
commit 3760c3b
Showing
37 changed files
with
16,930 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,347 @@ | ||
/* | ||
* SPDX-License-Identifier: Apache-2.0 | ||
*/ | ||
|
||
#include "ConditionalHelpers.hpp" | ||
#include "ModelImporter.hpp" | ||
#include "onnx2trt_utils.hpp" | ||
#include "toposort.hpp" | ||
|
||
namespace onnx2trt | ||
{ | ||
|
||
using NodeName = std::string; | ||
using LayerName = std::string; | ||
using InputIndex = int32_t; | ||
|
||
// A SubgraphPortsMap maps either the inputs or outputs ports of each node in an ONNX graph. | ||
using SubgraphPortsMap = std::unordered_map<nvinfer1::ITensor*, std::set<InputIndex>>; | ||
|
||
// An InputsMap tracks which IIfConditionalInputLayer we've added to a layer's inputs, | ||
// so that we can reuse them if needed. | ||
using InputsMap = std::unordered_map<LayerName, nvinfer1::IIfConditionalInputLayer*>; | ||
|
||
// Search for a network Layer name in a SubgraphPortsMap using partial (prefix) name matching. | ||
// ONNX nodes are matched to network layers using prefix-matching because an ONNX node may have | ||
// several network layers associcated with it. | ||
SubgraphPortsMap::const_iterator findLayer(const SubgraphPortsMap& inputs, const std::string layerName) | ||
{ | ||
return std::find_if(inputs.begin(), inputs.end(), [&](const auto& item) { | ||
std::string const key = item.first->getName(); | ||
return layerName.compare(0, key.size(), key) == 0; | ||
}); | ||
} | ||
|
||
// Add an ConditionalInputLayer between `layer` and its inputs. | ||
// I.e. input[inIdx] -> layer ==> input[inIdx] -> ConditionalInputLayer -> layer. | ||
Status addConditionalInputLayer(IImporterContext* ctx, nvinfer1::IIfConditional* conditional, InputsMap& inputsMap, | ||
nvinfer1::ILayer& layer, int32_t inIdx) | ||
{ | ||
auto input = layer.getInput(inIdx); | ||
if (input == nullptr) | ||
{ | ||
// Phantom input (an input that is really constant weights). | ||
return Status::success(); | ||
} | ||
|
||
if (layer.getType() == nvinfer1::LayerType::kCONDITIONAL_OUTPUT) | ||
{ | ||
return Status::success(); | ||
} | ||
|
||
auto const name = input->getName(); | ||
auto it = inputsMap.find(name); | ||
nvinfer1::IIfConditionalInputLayer* inputLayer = nullptr; | ||
if (it == inputsMap.end()) | ||
{ | ||
inputLayer = conditional->addInput(*input); | ||
inputsMap[name] = inputLayer; | ||
const std::string inputLayerName(name); | ||
ctx->registerLayer(inputLayer, inputLayerName + "_InputLayer", nullptr); | ||
// Note: Since multiple conditionals may use the same external tensor, check unique names for output tensors of | ||
// IfConditionalInputLayers to avoid tensor name duplication. | ||
ctx->registerTensor( | ||
TensorOrWeights{inputLayer->getOutput(0)}, inputLayerName + "_InputLayer_output", /*checkUniqueName*/ true); | ||
} | ||
else | ||
{ | ||
// An InputLayer may in the inputsMap if it has several consumers. | ||
inputLayer = it->second; | ||
} | ||
layer.setInput(inIdx, *(inputLayer->getOutput(0))); | ||
return Status::success(); | ||
}; | ||
|
||
// Take a snapshot of the network before and after parsing the subgraph and return a list | ||
// of newly added network layers. | ||
Status importSubgraph(IImporterContext* ctx, ::onnx::GraphProto const& subgraph, | ||
std::vector<nvinfer1::ILayer*>& newLayers, StringMap<TensorOrWeights>& subgraphTensors) | ||
{ | ||
auto net = ctx->network(); | ||
int32_t beforeSubgraph = net->getNbLayers(); | ||
|
||
// Establish scope for names local to the subgraph. | ||
NameScope nameScope(*ctx); | ||
|
||
CHECK(onnx2trt::parseGraph(ctx, subgraph)); | ||
|
||
for (int32_t i = 0; i < subgraph.output_size(); ++i) | ||
{ | ||
std::string name = subgraph.output(i).name(); | ||
subgraphTensors.emplace(std::make_pair(name, ctx->tensors().at(name))); | ||
} | ||
|
||
for (int32_t i = beforeSubgraph; i < net->getNbLayers(); i++) | ||
{ | ||
newLayers.push_back(net->getLayer(i)); | ||
} | ||
|
||
return Status::success(); | ||
} | ||
|
||
// Add an IConditionalInputLayer to `layer`'s inputs, if they don't already exist. | ||
Status addConditionalInputIfNeeded(IImporterContext* ctx, nvinfer1::IIfConditional* conditional, InputsMap& inputsMap, | ||
nvinfer1::ILayer& layer, SubgraphPortsMap subgraphInputsMap) | ||
{ | ||
// Return all of the layer's inputs that are external to the subgraph that | ||
// that the layer belongs to. | ||
auto getLayerExternalInputs = [&](std::string const& layerName) { | ||
std::set<int32_t> inIndices; | ||
auto iter = findLayer(subgraphInputsMap, layerName); | ||
if (iter != subgraphInputsMap.end()) | ||
{ | ||
const auto& indicesSet = iter->second; | ||
inIndices.insert(indicesSet.begin(), indicesSet.end()); | ||
} | ||
|
||
return inIndices; | ||
}; | ||
|
||
const auto inIndices = getLayerExternalInputs(layer.getName()); | ||
for (auto inIdx : inIndices) | ||
{ | ||
LOG_VERBOSE("Adding Input layer for " << layer.getName()); | ||
addConditionalInputLayer(ctx, conditional, inputsMap, layer, inIdx); | ||
} | ||
return Status::success(); | ||
} | ||
|
||
// Add IConditionalInputLayers to `layer`'s inputs. | ||
Status addIfInputLayers(IImporterContext* ctx, nvinfer1::IIfConditional* conditional, InputsMap& inputsMap, | ||
const std::vector<nvinfer1::ILayer*>& newLayers) | ||
{ | ||
// Find all of the tensors entering the subgraph. | ||
// The node-names are from the ONNX context. | ||
using InputIndex = int32_t; | ||
std::unordered_map<nvinfer1::ITensor*, std::set<InputIndex>> subgraphInputsMap; | ||
getSubgraphInputs(newLayers, subgraphInputsMap); | ||
|
||
// Add a ConditionalInputLayer in front of each input that is external to the subgraph. | ||
for (const auto& layer : newLayers) | ||
{ | ||
addConditionalInputIfNeeded(ctx, conditional, inputsMap, *layer, subgraphInputsMap); | ||
} | ||
|
||
return Status::success(); | ||
} | ||
|
||
// Add an IConditionalOutputLayer to `layer`'s outputs. | ||
Status addIfOutputLayers(IImporterContext* ctx, nvinfer1::IIfConditional* conditional, | ||
::onnx::GraphProto const& thenGraph, std::vector<nvinfer1::ILayer*> const& thenLayers, | ||
StringMap<TensorOrWeights> const& thenSubgraphTensors, ::onnx::GraphProto const& elseGraph, | ||
std::vector<nvinfer1::ILayer*> const& elseLayers, StringMap<TensorOrWeights> const& elseSubgraphTensors, | ||
std::vector<TensorOrWeights>& graphOutputs) | ||
{ | ||
// Reported outputs are outputs that the ONNX model reports as subgraph outputs. This list is | ||
// not sufficient because it may produce names that are not fully compatible with TensorRT's naming. | ||
// We use this list to help find the subgraph (SG) output tensors. | ||
auto getReportedOutputs | ||
= [&ctx](const ::onnx::GraphProto& body, std::vector<std::string>& reportedOutputs) { | ||
// Assuming that the subgraph was imported already, we can iterate on its output tensors. | ||
const auto nbOutputs = body.output_size(); | ||
for (auto i = 0; i < nbOutputs; i++) | ||
{ | ||
reportedOutputs.emplace_back(body.output(i).name()); | ||
} | ||
}; | ||
|
||
std::unordered_map<nvinfer1::ITensor*, std::set<int32_t>> thenOutputs; | ||
std::unordered_map<nvinfer1::ITensor*, std::set<int32_t>> elseOutputs; | ||
|
||
std::vector<std::string> thenReportedOutputs; | ||
getReportedOutputs(thenGraph, thenReportedOutputs); | ||
getSubgraphOutputs(thenLayers, thenOutputs, thenReportedOutputs); | ||
std::vector<std::string> elseReportedOutputs; | ||
getReportedOutputs(elseGraph, elseReportedOutputs); | ||
getSubgraphOutputs(elseLayers, elseOutputs, elseReportedOutputs); | ||
|
||
// Retrieve the output tensors of a subgraph (tensors exiting the subgraph). | ||
auto getSubgraphOutputTensors | ||
= [](IImporterContext* ctx, std::vector<nvinfer1::ITensor*>& sgOutputs, SubgraphPortsMap& subgraphOutputs, | ||
::onnx::GraphProto const& subgraph, std::vector<nvinfer1::ILayer*> subgraphLayers, | ||
StringMap<TensorOrWeights> const& subgraphTensors) { | ||
for (auto const& pair : subgraphOutputs) | ||
{ | ||
sgOutputs.push_back(pair.first); | ||
} | ||
|
||
if (sgOutputs.empty()) | ||
{ | ||
// No new layers, so we can't deduce the outputs and have to use what ONNX tells us. | ||
const int32_t nbOutputs = subgraph.output_size(); | ||
for (int32_t outIdx = 0; outIdx < nbOutputs; outIdx++) | ||
{ | ||
const auto thenName = subgraph.output(outIdx).name(); | ||
TensorOrWeights tw = subgraphTensors.at(thenName); | ||
auto* thenTensor = &convertToTensor(tw, ctx); | ||
sgOutputs.push_back(thenTensor); | ||
} | ||
} | ||
}; | ||
|
||
std::vector<nvinfer1::ITensor*> thenOutputTensors; | ||
getSubgraphOutputTensors(ctx, thenOutputTensors, thenOutputs, thenGraph, thenLayers, thenSubgraphTensors); | ||
|
||
std::vector<nvinfer1::ITensor*> elseSGOutputTensors; | ||
getSubgraphOutputTensors(ctx, elseSGOutputTensors, elseOutputs, elseGraph, elseLayers, elseSubgraphTensors); | ||
|
||
ASSERT(thenOutputTensors.size() == elseSGOutputTensors.size() | ||
&& "The then/else branches of an If operator must have the same number of outputs.", | ||
ErrorCode::kINVALID_NODE); | ||
|
||
// Add an ConditionalOutputLayer with one output and two inputs | ||
// (one from the thenGraph and another from the elseGraph). | ||
for (size_t i = 0; i < elseSGOutputTensors.size(); i++) | ||
{ | ||
auto* outputLayer = conditional->addOutput(*thenOutputTensors[i], *elseSGOutputTensors[i]); | ||
ctx->registerLayer(outputLayer, std::string(conditional->getName()) + "_OutputLayer", nullptr); | ||
graphOutputs.emplace_back(outputLayer->getOutput(0)); | ||
} | ||
return Status::success(); | ||
} | ||
|
||
// Given a subgraph, find all of its external inputs/outputs (tensors entering/exiting the subgraph). | ||
Status getSubgraphTensors(const std::vector<nvinfer1::ILayer*>& newLayers, | ||
std::unordered_map<nvinfer1::ITensor*, std::set<int32_t>>& externalOutputs, bool extractOutputs, | ||
const std::vector<std::string>* reportedOutputs = nullptr) | ||
{ | ||
using NodeName = std::string; | ||
using TensorName = std::string; | ||
using PortIndex = int32_t; | ||
using Port = std::pair<NodeName, PortIndex>; | ||
using TensorsSet = std::unordered_set<nvinfer1::ITensor*>; | ||
TensorsSet outputTensors; | ||
TensorsSet inputTensors; | ||
|
||
// To determine which tensors are entering or exiting the given graph, we first collect the sets of all input and | ||
// output tensors. Then we categorize the tensors according to this logic: | ||
// Entering tensors := {inputs} - {outputs} | ||
// Exiting tensors := {outputs} - {inputs} | ||
|
||
// Collect all input and output tensors belonging to nodes in the graph. | ||
|
||
auto getTensors = [](nvinfer1::ILayer const* l, bool const input, auto inserter) { | ||
auto const count = input ? l->getNbInputs() : l->getNbOutputs(); | ||
for (int32_t i = 0; i < count; i++) | ||
{ | ||
inserter(input ? l->getInput(i) : l->getOutput(i)); | ||
} | ||
}; | ||
|
||
for (const auto& l : newLayers) | ||
{ | ||
getTensors(l, false, [&](nvinfer1::ITensor* t) { outputTensors.insert(t); }); | ||
getTensors(l, true, [&](nvinfer1::ITensor* t) { inputTensors.insert(t); }); | ||
} | ||
|
||
using TensorsVec = std::vector<nvinfer1::ITensor*>; | ||
auto getOutputs = [&](nvinfer1::ILayer const* l, TensorsVec& res) { | ||
getTensors(l, false, [&](nvinfer1::ITensor* t) { res.emplace_back(t); }); | ||
}; | ||
|
||
auto getInputs = [&](nvinfer1::ILayer const* l, TensorsVec& res) { | ||
getTensors(l, true, [&](nvinfer1::ITensor* t) { res.emplace_back(t); }); | ||
}; | ||
|
||
// Retrieve the list of tensors either exiting or entering the subgraph. | ||
std::unordered_map<nvinfer1::ITensor*, std::vector<Port>> externalPortsMap; | ||
auto filterTensors = [&](TensorsSet const& tensors, auto getNodeAccessor) { | ||
for (nvinfer1::ILayer const* l : newLayers) | ||
{ | ||
const auto& nodeName = l->getName(); | ||
PortIndex i = 0; | ||
|
||
TensorsVec nodeAccessor; | ||
getNodeAccessor(l, nodeAccessor); | ||
for (const auto& tensor : nodeAccessor) | ||
{ | ||
if (tensor == nullptr) | ||
{ | ||
continue; | ||
} | ||
if (tensors.count(tensor) == 0) | ||
{ | ||
TensorName tensorName = tensor->getName(); | ||
auto prefixFound = false; | ||
if (reportedOutputs) | ||
{ | ||
// reportedOutputs are the names of the outputs as reported by the ONNX parser and help | ||
// us further filter the output tensors. | ||
// Exiting tensors := {outputs} - {inputs} - {unreported tensors} | ||
// An example: a Split node is internal to a subgraph and has 4 outputs, but only two are | ||
// connected to the rest of the graph. To prevent mistaking the 2 unused outputs as subgraph | ||
// outputs, we look for them in reportedOutputs which leads us to ignore the 2 tensors. | ||
const auto iter = std::find_if( | ||
reportedOutputs->begin(), reportedOutputs->end(), [&](const auto& outputName) { | ||
// Prefix name matching. | ||
return tensorName.compare(0, outputName.size(), outputName) == 0; | ||
}); | ||
prefixFound = iter != reportedOutputs->end(); | ||
} | ||
if (!reportedOutputs || prefixFound) | ||
{ | ||
externalPortsMap[tensor].push_back(std::make_pair(nodeName, i)); | ||
} | ||
} | ||
i++; | ||
} | ||
} | ||
}; | ||
|
||
if (extractOutputs) | ||
{ | ||
filterTensors(inputTensors, getOutputs); | ||
} | ||
else | ||
{ | ||
filterTensors(outputTensors, getInputs); | ||
} | ||
|
||
// Create the user's view of the external inputs, which uses the node-name as the key for | ||
// looking up input/output port index. | ||
for (auto const& input : externalPortsMap) | ||
{ | ||
for (const Port& inPort : input.second) | ||
{ | ||
auto* tensor = input.first; | ||
auto const portIndex = inPort.second; | ||
externalOutputs[tensor].insert(portIndex); | ||
} | ||
} | ||
return Status::success(); | ||
} | ||
|
||
Status getSubgraphOutputs(const std::vector<nvinfer1::ILayer*>& newLayers, | ||
std::unordered_map<nvinfer1::ITensor*, std::set<int32_t>>& externalOutputs, | ||
const std::vector<std::string>& reportedOutputs) | ||
{ | ||
return getSubgraphTensors(newLayers, externalOutputs, true, &reportedOutputs); | ||
} | ||
|
||
Status getSubgraphInputs(const std::vector<nvinfer1::ILayer*>& newLayers, | ||
std::unordered_map<nvinfer1::ITensor*, std::set<int32_t>>& externalInputs) | ||
{ | ||
return getSubgraphTensors(newLayers, externalInputs, false); | ||
} | ||
|
||
} // namespace onnx2trt |
Oops, something went wrong.