forked from Melody-Zhou/tensorRT_Pro-YOLOv8
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
unknown
committed
Jan 21, 2024
1 parent
f6858ae
commit a304e9f
Showing
10 changed files
with
1,086 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,183 @@ | ||
import cv2 | ||
import torch | ||
import numpy as np | ||
from ultralytics.data.augment import LetterBox | ||
from ultralytics.nn.autobackend import AutoBackend | ||
|
||
def preprocess_letterbox(image): | ||
letterbox = LetterBox(new_shape=1024, stride=32, auto=True) | ||
image = letterbox(image=image) | ||
image = (image[..., ::-1] / 255.0).astype(np.float32) # BGR to RGB, 0 - 255 to 0.0 - 1.0 | ||
image = image.transpose(2, 0, 1)[None] # BHWC to BCHW (n, 3, h, w) | ||
image = torch.from_numpy(image) | ||
return image | ||
|
||
def preprocess_warpAffine(image, dst_width=1024, dst_height=1024): | ||
scale = min((dst_width / image.shape[1], dst_height / image.shape[0])) | ||
ox = (dst_width - scale * image.shape[1]) / 2 | ||
oy = (dst_height - scale * image.shape[0]) / 2 | ||
M = np.array([ | ||
[scale, 0, ox], | ||
[0, scale, oy] | ||
], dtype=np.float32) | ||
img_pre = cv2.warpAffine(image, M, (dst_width, dst_height), flags=cv2.INTER_LINEAR, | ||
borderMode=cv2.BORDER_CONSTANT, borderValue=(114, 114, 114)) | ||
IM = cv2.invertAffineTransform(M) | ||
img_pre = (img_pre[...,::-1] / 255.0).astype(np.float32) | ||
img_pre = img_pre.transpose(2, 0, 1)[None] | ||
img_pre = torch.from_numpy(img_pre) | ||
return img_pre, IM | ||
|
||
def xywhr2xyxyxyxy(center): | ||
# reference: https://github.com/ultralytics/ultralytics/blob/v8.1.0/ultralytics/utils/ops.py#L545 | ||
is_numpy = isinstance(center, np.ndarray) | ||
cos, sin = (np.cos, np.sin) if is_numpy else (torch.cos, torch.sin) | ||
|
||
ctr = center[..., :2] | ||
w, h, angle = (center[..., i : i + 1] for i in range(2, 5)) | ||
cos_value, sin_value = cos(angle), sin(angle) | ||
vec1 = [w / 2 * cos_value, w / 2 * sin_value] | ||
vec2 = [-h / 2 * sin_value, h / 2 * cos_value] | ||
vec1 = np.concatenate(vec1, axis=-1) if is_numpy else torch.cat(vec1, dim=-1) | ||
vec2 = np.concatenate(vec2, axis=-1) if is_numpy else torch.cat(vec2, dim=-1) | ||
pt1 = ctr + vec1 + vec2 | ||
pt2 = ctr + vec1 - vec2 | ||
pt3 = ctr - vec1 - vec2 | ||
pt4 = ctr - vec1 + vec2 | ||
return np.stack([pt1, pt2, pt3, pt4], axis=-2) if is_numpy else torch.stack([pt1, pt2, pt3, pt4], dim=-2) | ||
|
||
def probiou(obb1, obb2, eps=1e-7): | ||
# Calculate the prob iou between oriented bounding boxes, https://arxiv.org/pdf/2106.06072v1.pdf. | ||
def covariance_matrix(obb): | ||
# Extract elements | ||
w, h, r = obb[2:5] | ||
a = (w ** 2) / 12 | ||
b = (h ** 2) / 12 | ||
|
||
cos_r = torch.cos(torch.tensor(r)) | ||
sin_r = torch.sin(torch.tensor(r)) | ||
|
||
# Calculate covariance matrix elements | ||
a_val = a * cos_r ** 2 + b * sin_r ** 2 | ||
b_val = a * sin_r ** 2 + b * cos_r ** 2 | ||
c_val = (a - b) * sin_r * cos_r | ||
|
||
return a_val, b_val, c_val | ||
|
||
a1, b1, c1 = covariance_matrix(obb1) | ||
a2, b2, c2 = covariance_matrix(obb2) | ||
|
||
x1, y1 = obb1[:2] | ||
x2, y2 = obb2[:2] | ||
|
||
t1 = ((a1 + a2) * ((y1 - y2) ** 2) + (b1 + b2) * ((x1 - x2) ** 2)) / ((a1 + a2) * (b1 + b2) - (c1 + c2) ** 2 + eps) | ||
t2 = ((c1 + c2) * (x2 - x1) * (y1 - y2)) / ((a1 + a2) * (b1 + b2) - (c1 + c2) ** 2 + eps) | ||
t3 = torch.log(((a1 + a2) * (b1 + b2) - (c1 + c2) ** 2) / (4 * torch.sqrt(a1 * b1 - c1 ** 2) * torch.sqrt(a2 * b2 - c2 ** 2) + eps) + eps) | ||
|
||
bd = 0.25 * t1 + 0.5 * t2 + 0.5 * t3 | ||
hd = torch.sqrt(1.0 - torch.exp(-torch.clamp(bd, eps, 100.0)) + eps) | ||
return 1 - hd | ||
|
||
def NMS(boxes, iou_thres): | ||
|
||
remove_flags = [False] * len(boxes) | ||
|
||
keep_boxes = [] | ||
for i, ibox in enumerate(boxes): | ||
if remove_flags[i]: | ||
continue | ||
|
||
keep_boxes.append(ibox) | ||
for j in range(i + 1, len(boxes)): | ||
if remove_flags[j]: | ||
continue | ||
|
||
jbox = boxes[j] | ||
if(ibox[6] != jbox[6]): | ||
continue | ||
if probiou(ibox, jbox) > iou_thres: | ||
remove_flags[j] = True | ||
return keep_boxes | ||
|
||
def postprocess(pred, IM=[], conf_thres=0.25, iou_thres=0.45): | ||
|
||
# 输入是模型推理的结果,即21504个预测框 | ||
# 1,21504,20 [cx,cy,w,h,class*15,rotated] | ||
boxes = [] | ||
for item in pred[0]: | ||
cx, cy, w, h = item[:4] | ||
angle = item[-1] | ||
label = item[4:-1].argmax() | ||
confidence = item[4 + label] | ||
if confidence < conf_thres: | ||
continue | ||
boxes.append([cx, cy, w, h, angle, confidence, label]) | ||
|
||
boxes = np.array(boxes) | ||
cx = boxes[:, 0] | ||
cy = boxes[:, 1] | ||
wh = boxes[:, 2:4] | ||
boxes[:, 0] = IM[0][0] * cx + IM[0][2] | ||
boxes[:, 1] = IM[1][1] * cy + IM[1][2] | ||
boxes[:, 2:4] = IM[0][0] * wh | ||
boxes = sorted(boxes.tolist(), key=lambda x:x[5], reverse=True) | ||
|
||
return NMS(boxes, iou_thres) | ||
|
||
def hsv2bgr(h, s, v): | ||
h_i = int(h * 6) | ||
f = h * 6 - h_i | ||
p = v * (1 - s) | ||
q = v * (1 - f * s) | ||
t = v * (1 - (1 - f) * s) | ||
|
||
r, g, b = 0, 0, 0 | ||
|
||
if h_i == 0: | ||
r, g, b = v, t, p | ||
elif h_i == 1: | ||
r, g, b = q, v, p | ||
elif h_i == 2: | ||
r, g, b = p, v, t | ||
elif h_i == 3: | ||
r, g, b = p, q, v | ||
elif h_i == 4: | ||
r, g, b = t, p, v | ||
elif h_i == 5: | ||
r, g, b = v, p, q | ||
|
||
return int(b * 255), int(g * 255), int(r * 255) | ||
|
||
def random_color(id): | ||
h_plane = (((id << 2) ^ 0x937151) % 100) / 100.0 | ||
s_plane = (((id << 3) ^ 0x315793) % 100) / 100.0 | ||
return hsv2bgr(h_plane, s_plane, 1) | ||
|
||
if __name__ == "__main__": | ||
|
||
img = cv2.imread("P0032.jpg") | ||
|
||
# img_pre = preprocess_letterbox(img) | ||
img_pre, IM = preprocess_warpAffine(img) | ||
model = AutoBackend(weights="yolov8s-obb.pt") | ||
names = model.names | ||
result = model(img_pre)[0].transpose(-1, -2) # 1,21504,20 | ||
|
||
boxes = postprocess(result, IM) | ||
confs = [box[5] for box in boxes] | ||
classes = [int(box[6]) for box in boxes] | ||
boxes = xywhr2xyxyxyxy(np.array(boxes)[..., :5]) | ||
|
||
for i, box in enumerate(boxes): | ||
confidence = confs[i] | ||
label = classes[i] | ||
color = random_color(label) | ||
cv2.polylines(img, [np.asarray(box, dtype=int)], True, color, 2) | ||
caption = f"{names[label]} {confidence:.2f}" | ||
w, h = cv2.getTextSize(caption, 0 ,1, 2)[0] | ||
left, top = [int(b) for b in box[0]] | ||
cv2.rectangle(img, (left - 3, top - 33), (left + w + 10, top), color, -1) | ||
cv2.putText(img, caption, (left, top - 5), 0, 1, (0, 0, 0), 2, 16) | ||
|
||
cv2.imwrite("infer-obb.jpg", img) | ||
print("save done") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,77 @@ | ||
import cv2 | ||
import torch | ||
import numpy as np | ||
from ultralytics import YOLO | ||
|
||
def xywhr2xyxyxyxy(center): | ||
# reference: https://github.com/ultralytics/ultralytics/blob/v8.1.0/ultralytics/utils/ops.py#L545 | ||
is_numpy = isinstance(center, np.ndarray) | ||
cos, sin = (np.cos, np.sin) if is_numpy else (torch.cos, torch.sin) | ||
|
||
ctr = center[..., :2] | ||
w, h, angle = (center[..., i : i + 1] for i in range(2, 5)) | ||
cos_value, sin_value = cos(angle), sin(angle) | ||
vec1 = [w / 2 * cos_value, w / 2 * sin_value] | ||
vec2 = [-h / 2 * sin_value, h / 2 * cos_value] | ||
vec1 = np.concatenate(vec1, axis=-1) if is_numpy else torch.cat(vec1, dim=-1) | ||
vec2 = np.concatenate(vec2, axis=-1) if is_numpy else torch.cat(vec2, dim=-1) | ||
pt1 = ctr + vec1 + vec2 | ||
pt2 = ctr + vec1 - vec2 | ||
pt3 = ctr - vec1 - vec2 | ||
pt4 = ctr - vec1 + vec2 | ||
return np.stack([pt1, pt2, pt3, pt4], axis=-2) if is_numpy else torch.stack([pt1, pt2, pt3, pt4], dim=-2) | ||
|
||
def hsv2bgr(h, s, v): | ||
h_i = int(h * 6) | ||
f = h * 6 - h_i | ||
p = v * (1 - s) | ||
q = v * (1 - f * s) | ||
t = v * (1 - (1 - f) * s) | ||
|
||
r, g, b = 0, 0, 0 | ||
|
||
if h_i == 0: | ||
r, g, b = v, t, p | ||
elif h_i == 1: | ||
r, g, b = q, v, p | ||
elif h_i == 2: | ||
r, g, b = p, v, t | ||
elif h_i == 3: | ||
r, g, b = p, q, v | ||
elif h_i == 4: | ||
r, g, b = t, p, v | ||
elif h_i == 5: | ||
r, g, b = v, p, q | ||
|
||
return int(b * 255), int(g * 255), int(r * 255) | ||
|
||
def random_color(id): | ||
h_plane = (((id << 2) ^ 0x937151) % 100) / 100.0 | ||
s_plane = (((id << 3) ^ 0x315793) % 100) / 100.0 | ||
return hsv2bgr(h_plane, s_plane, 1) | ||
|
||
if __name__ == "__main__": | ||
|
||
model = YOLO("yolov8s-obb.pt") | ||
|
||
img = cv2.imread("P0032.png") | ||
results = model(img)[0] | ||
names = results.names | ||
boxes = results.obb.data.cpu() | ||
confs = boxes[..., 5].tolist() | ||
classes = list(map(int, boxes[..., 6].tolist())) | ||
boxes = xywhr2xyxyxyxy(boxes[..., :5]) | ||
|
||
for i, box in enumerate(boxes): | ||
confidence = confs[i] | ||
label = classes[i] | ||
color = random_color(label) | ||
cv2.polylines(img, [np.asarray(box, dtype=int)], True, color, 2) | ||
caption = f"{names[label]} {confidence:.2f}" | ||
w, h = cv2.getTextSize(caption, 0 ,1, 2)[0] | ||
left, top = [int(b) for b in box[0]] | ||
cv2.rectangle(img, (left - 3, top - 33), (left + w + 10, top), color, -1) | ||
cv2.putText(img, caption, (left, top - 5), 0, 1, (0, 0, 0), 2, 16) | ||
|
||
cv2.imwrite("predict-obb.jpg", img) | ||
print("save done") |
Oops, something went wrong.