by Guanghu Xie, Yang Liu*, Yiming Ji, Zongwu Xie, Baoshi Cao
This repository is built for the official implementation of:
PAConv: point and shifted voxel MLP For 3D deep learning
Download and unzip ModelNet40 (415M). Then symlink the paths to it as follows (you can alternatively modify the path here):
mkdir -p data
ln -s /path to modelnet40/modelnet40_ply_hdf5_2048 data
python main.py --config config/psvmlp_train.yaml
python eval_voting.py --config config/psvmlp_test.yaml`
The dataset will be automatically downloaded from ScanObjectNN
cd classification_ScanObjectNN
# train
python main_part_seg.py --model psvmlp
By default, it will create a fold named "checkpoints/{modelName}-{msg}-{randomseed}", which includes args.txt, best_checkpoint.pth, last_checkpoint.pth, log.txt, out.txt.
- Make data folder and download the dataset from ShapeNet.
cd part_segmentation
mkdir data
cd data
wget https://shapenet.cs.stanford.edu/media/shapenetcore_partanno_segmentation_benchmark_v0_normal.zip --no-check-certificate
unzip shapenetcore_partanno_segmentation_benchmark_v0_normal.zip
- Train PSVMLP
# train PSVMLP
python main.py --config config/psvmlp_partseg_train.yaml
# please add other paramemters as you wish.
- Test PSVMLP
# test PSVMLP
python main.py --config config/psvmlp_partseg_test.yaml
# please add other paramemters as you wish.
Our implementation is mainly based on the following codebases. We gratefully thank the authors for their wonderful works.
PSVMLP is under the Apache-2.0 license. # psvmlp