Official research release for the family of XGen models (7B
) by Salesforce AI Research:
Title: Long Sequence Modeling with XGen: A 7B LLM Trained on 8K Input Sequence Length
Authors: Erik Nijkamp*, Tian Xie*, Hiroaki Hayashi*, Bo Pang*, Congying Xia*, Chen Xing, Rui Meng, Wojciech Kryscinski, Lifu Tu, Meghana Bhat, Semih Yavuz, Jesse Vig, Lidiya Murakhovs'ka, Chien-Sheng Wu, Yingbo Zhou, Shafiq Rayhan Joty, Caiming Xiong, Silvio Savarese.
(* indicates equal contribution)
Correspondence to: Shafiq Rayhan Joty, Caiming Xiong
Model cards are published on the HuggingFace Hub:
- XGen-7B-4K-Base with support for 4K sequence length.
- XGen-7B-8K-Base with support for 8K sequence length.
- XGen-7B-8k-Inst with instruction-finetuning (for research purpose only).
The tokenization uses the OpenAI Tiktoken package, which can be installed via pip
:
pip install tiktoken
The models can be used as auto-regressive samplers as follows:
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Salesforce/xgen-7b-8k-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Salesforce/xgen-7b-8k-base", torch_dtype=torch.bfloat16)
inputs = tokenizer("The world is", return_tensors="pt")
sample = model.generate(**inputs, max_length=128)
print(tokenizer.decode(sample[0]))
@misc{XGen,
title={Long Sequence Modeling with XGen: A 7B LLM Trained on 8K Input Sequence Length},
author={Erik Nijkamp, Tian Xie, Hiroaki Hayashi, Bo Pang, Congying Xia, Chen Xing, Rui Meng, Wojciech Kryscinski, Lifu Tu, Meghana Bhat, Semih Yavuz, Jesse Vig, Lidiya Murakhovs'ka, Chien-Sheng Wu, Yingbo Zhou, Shafiq Rayhan Joty, Caiming Xiong, Silvio Savarese},
howpublished={Salesforce AI Research Blog},
year={2023},
url={https://blog.salesforceairesearch.com/xgen}
}