Skip to content
/ PE3R Public

PE3R: Perception-Efficient 3D Reconstruction. Take 2 - 3 photos with your phone, upload them, wait a few minutes, and then start exploring your 3D world via text!

License

Notifications You must be signed in to change notification settings

hujiecpp/PE3R

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PE3R: Perception-Efficient 3D Reconstruction


(PE3R reconstructs 3D scenes using only 2D images and enables semantic understanding through language.)

PE3R: Perception-Efficient 3D Reconstruction
Jie Hu, Shizun Wang, Xinchao Wang
xML Lab, National University of Singapore
📔 [paper] 🎥 [video] 🤗 [demo]

Why PE3R

  • 🚀 Input efficiency: Operate solely with 2D images.
  • 🚀 Time efficiency: Accelerated 3D semantic reconstruction.
  • 🚀 Generalizability: Zero-shot generalization across scenes and objects.

Quick Start

Install

conda create --name pe3r
conda activate pe3r
git clone 
pip install requirements.txt

Usage

python pe3r_demo.py

Acknowledgements

BibTeX

@article{hu2025pe3r,
  title={PE3R: Perception-Efficient 3D Reconstruction},
  author={Hu, Jie and Wang, Shizun and Wang, Xinchao},
  journal={arXiv preprint arXiv:2503.07507},
  year={2025}
}

About

PE3R: Perception-Efficient 3D Reconstruction. Take 2 - 3 photos with your phone, upload them, wait a few minutes, and then start exploring your 3D world via text!

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages