Skip to content

Stratified Transformer for 3D Point Cloud Segmentation (CVPR 2022)

Notifications You must be signed in to change notification settings

hulaifeng/Stratified-Transformer

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Stratified Transformer for 3D Point Cloud Segmentation

Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia

This is the official PyTorch implementation of our paper Stratified Transformer for 3D Point Cloud Segmentation that has been accepted to CVPR 2022. [arXiv]

Highlight

  1. Our method (Stratified Transformer) achieves the state-of-the-art performance on 3D point cloud semantic segmentation on both S3DIS and ScanNetv2 datasets. It is the first time for a point-based method to outperform the voxel-based ones, such as SparseConvNet and MinkowskiNet;
  2. Stratified Transformer is point-based, and constructed by Transformer with standard multi-head self-attention, enjoying large receptive field, robust generalization ability as well as competitive performance;
  3. This repository develops a memory-efficient implementation to combat the issue of variant-length tokens with several CUDA kernels, avoiding unnecessary momery occupation of vacant tokens. We also use shared memory for further acceleration.

Get Started

Environment

Install dependencies (we recommend using conda and pytorch>=1.8.0 for quick installation, but 1.6.0+ should work with this repo)

# install torch_points3d

# If you use conda and pytorch>=1.8.0, (this enables quick installation)
conda install pytorch-cluster -c pyg
conda install pytorch-sparse -c pyg
conda install pyg -c pyg
pip install torch_points3d

# Otherwise,
pip install torch_points3d

Install other dependencies

pip install tensorboard timm termcolor tensorboardX

Make sure you have installed gcc and cuda, and nvcc can work (Note that if you install cuda by conda, it won't provide nvcc and you should install cuda manually.). Then, compile and install pointops2 as follows. (We have tested on gcc>=7.5.0 and cuda>=10.1)

cd lib/pointops2
python3 setup.py install

Datasets Preparation

S3DIS

Please refer to https://github.com/yanx27/Pointnet_Pointnet2_pytorch for S3DIS preprocessing. Then modify the data_root entry in the .yaml configuration file.

ScanNetv2

Please refer to https://github.com/dvlab-research/PointGroup for the ScanNetv2 preprocessing. Then change the data_root entry in the .yaml configuration file accordingly.

Training

S3DIS

  • Stratified Transformer
python3 train.py --config config/s3dis/s3dis_stratified_transformer.yaml
  • 3DSwin Transformer (The vanilla version shown in our paper)
python3 train.py --config config/s3dis/s3dis_swin3d_transformer.yaml

ScanNetv2

  • Stratified Transformer
python3 train.py --config config/scannetv2/scannetv2_stratified_transformer.yaml
  • 3DSwin Transformer (The vanilla version shown in our paper)
python3 train.py --config config/scannetv2/scannetv2_swin3d_transformer.yaml

Note: It it normal to see the the results on S3DIS fluctuate between -0.5% and +0.5% mIoU maybe because the size of S3DIS is relatively small, while the results on ScanNetv2 are relatively stable.

Testing

For testing, first change the model_path, save_folder and data_root_val (if applicable) accordingly. Then, run the following command.

python3 test.py --config [YOUR_CONFIG_PATH]

Pre-trained Models

For your convenience, you can download the pre-trained models and training/testing logs from Here.

Citation

If you find this project useful, please consider citing:

@inproceedings{lai2022stratified,
  title     = {Stratified Transformer for 3D Point Cloud Segmentation},
  author    = {Xin Lai, Jianhui Liu, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia},
  booktitle = {CVPR},
  year      = {2022}
}

About

Stratified Transformer for 3D Point Cloud Segmentation (CVPR 2022)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 49.0%
  • C++ 31.4%
  • Cuda 19.6%