forked from Hvass-Labs/TensorFlow-Tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
21d8b23
commit aa6b31e
Showing
7 changed files
with
4,513 additions
and
0 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,156 @@ | ||
######################################################################## | ||
# | ||
# Cache-wrapper for a function or class. | ||
# | ||
# Save the result of calling a function or creating an object-instance | ||
# to harddisk. This is used to persist the data so it can be reloaded | ||
# very quickly and easily. | ||
# | ||
# Implemented in Python 3.5 | ||
# | ||
######################################################################## | ||
# | ||
# This file is part of the TensorFlow Tutorials available at: | ||
# | ||
# https://github.com/Hvass-Labs/TensorFlow-Tutorials | ||
# | ||
# Published under the MIT License. See the file LICENSE for details. | ||
# | ||
# Copyright 2016 by Magnus Erik Hvass Pedersen | ||
# | ||
######################################################################## | ||
|
||
import os | ||
import pickle | ||
import numpy as np | ||
|
||
######################################################################## | ||
|
||
|
||
def cache(cache_path, fn, *args, **kwargs): | ||
""" | ||
Cache-wrapper for a function or class. If the cache-file exists | ||
then the data is reloaded and returned, otherwise the function | ||
is called and the result is saved to cache. The fn-argument can | ||
also be a class instead, in which case an object-instance is | ||
created and saved to the cache-file. | ||
:param cache_path: | ||
File-path for the cache-file. | ||
:param fn: | ||
Function or class to be called. | ||
:param args: | ||
Arguments to the function or class-init. | ||
:param kwargs: | ||
Keyword arguments to the function or class-init. | ||
:return: | ||
The result of calling the function or creating the object-instance. | ||
""" | ||
|
||
# If the cache-file exists. | ||
if os.path.exists(cache_path): | ||
# Load the cached data from the file. | ||
with open(cache_path, mode='rb') as file: | ||
obj = pickle.load(file) | ||
|
||
print("- Data loaded from cache-file: " + cache_path) | ||
else: | ||
# The cache-file does not exist. | ||
|
||
# Call the function / class-init with the supplied arguments. | ||
obj = fn(*args, **kwargs) | ||
|
||
# Save the data to a cache-file. | ||
with open(cache_path, mode='wb') as file: | ||
pickle.dump(obj, file) | ||
|
||
print("- Data saved to cache-file: " + cache_path) | ||
|
||
return obj | ||
|
||
|
||
######################################################################## | ||
|
||
|
||
def convert_numpy2pickle(in_path, out_path): | ||
""" | ||
Convert a numpy-file to pickle-file. | ||
The first version of the cache-function used numpy for saving the data. | ||
Instead of re-calculating all the data, you can just convert the | ||
cache-file using this function. | ||
:param in_path: | ||
Input file in numpy-format written using numpy.save(). | ||
:param out_path: | ||
Output file written as a pickle-file. | ||
:return: | ||
Nothing. | ||
""" | ||
|
||
# Load the data using numpy. | ||
data = np.load(in_path) | ||
|
||
# Save the data using pickle. | ||
with open(out_path, mode='wb') as file: | ||
pickle.dump(data, file) | ||
|
||
|
||
######################################################################## | ||
|
||
if __name__ == '__main__': | ||
# This is a short example of using a cache-file. | ||
|
||
# This is the function that will only get called if the result | ||
# is not already saved in the cache-file. This would normally | ||
# be a function that takes a long time to compute, or if you | ||
# need persistent data for some other reason. | ||
def expensive_function(a, b): | ||
return a * b | ||
|
||
print('Computing expensive_function() ...') | ||
|
||
# Either load the result from a cache-file if it already exists, | ||
# otherwise calculate expensive_function(a=123, b=456) and | ||
# save the result to the cache-file for next time. | ||
result = cache(cache_path='cache_expensive_function.pkl', | ||
fn=expensive_function, a=123, b=456) | ||
|
||
print('result =', result) | ||
|
||
# Newline. | ||
print() | ||
|
||
# This is another example which saves an object to a cache-file. | ||
|
||
# We want to cache an object-instance of this class. | ||
# The motivation is to do an expensive computation only once, | ||
# or if we need to persist the data for some other reason. | ||
class ExpensiveClass: | ||
def __init__(self, c, d): | ||
self.c = c | ||
self.d = d | ||
self.result = c * d | ||
|
||
def print_result(self): | ||
print('c =', self.c) | ||
print('d =', self.d) | ||
print('result = c * d =', self.result) | ||
|
||
print('Creating object from ExpensiveClass() ...') | ||
|
||
# Either load the object from a cache-file if it already exists, | ||
# otherwise make an object-instance ExpensiveClass(c=123, d=456) | ||
# and save the object to the cache-file for the next time. | ||
obj = cache(cache_path='cache_ExpensiveClass.pkl', | ||
fn=ExpensiveClass, c=123, d=456) | ||
|
||
obj.print_result() | ||
|
||
######################################################################## |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,197 @@ | ||
#!/usr/bin/python | ||
|
||
######################################################################## | ||
# | ||
# Function and script for converting videos to images. | ||
# | ||
# This can be run as a script in a Linux shell by typing: | ||
# | ||
# python convert.py | ||
# | ||
# Or by running: | ||
# | ||
# chmod +x convert.py | ||
# ./convert.py | ||
# | ||
# Requires the program avconv to be installed. | ||
# Tested with avconv v. 9.18-6 on Linux Mint. | ||
# | ||
# Implemented in Python 3.5 (seems to work in Python 2.7 as well) | ||
# | ||
######################################################################## | ||
# | ||
# This file is part of the TensorFlow Tutorials available at: | ||
# | ||
# https://github.com/Hvass-Labs/TensorFlow-Tutorials | ||
# | ||
# Published under the MIT License. See the file LICENSE for details. | ||
# | ||
# Copyright 2016 by Magnus Erik Hvass Pedersen | ||
# | ||
######################################################################## | ||
|
||
import os | ||
import subprocess | ||
import argparse | ||
|
||
######################################################################## | ||
|
||
|
||
def video2images(in_dir, out_dir, crop_size, out_size, framerate, video_exts): | ||
""" | ||
Convert videos to images. The videos are located in the directory in_dir | ||
and all its sub-directories which are processed recursively. The directory | ||
structure is replicated to out_dir where the jpeg-images are saved. | ||
:param in_dir: | ||
Input directory for the videos e.g. "/home/magnus/video/" | ||
All sub-directories are processed recursively. | ||
:param out_dir: | ||
Output directory for the images e.g. "/home/magnus/video-images/" | ||
:param crop_size: | ||
Integer. First the videos are cropped to this width and height. | ||
:param out_size: | ||
Integer. After cropping, the videos are resized to this width and height. | ||
:param framerate: | ||
Integer. Number of frames to grab per second. | ||
:param video_exts: | ||
Tuple of strings. Extensions for video-files e.g. ('.mts', '.mp4') | ||
Not case-sensitive. | ||
:return: | ||
Nothing. | ||
""" | ||
|
||
# Convert all video extensions to lower-case. | ||
video_exts = tuple(ext.lower() for ext in video_exts) | ||
|
||
# Number of videos processed. | ||
video_count = 0 | ||
|
||
# Process all the sub-dirs recursively. | ||
for current_dir, dir_names, file_names in os.walk(in_dir): | ||
# The current dir relative to the input directory. | ||
relative_path = os.path.relpath(current_dir, in_dir) | ||
|
||
# Name of the new directory for the output images. | ||
new_dir = os.path.join(out_dir, relative_path) | ||
|
||
# If the output-directory does not exist, then create it. | ||
if not os.path.exists(new_dir): | ||
os.makedirs(new_dir) | ||
|
||
# For all the files in the current directory. | ||
for file_name in file_names: | ||
# If the file has a valid video-extension. Compare lower-cases. | ||
if file_name.lower().endswith(video_exts): | ||
# File-path for the input video. | ||
in_file = os.path.join(current_dir, file_name) | ||
|
||
# Split the file-path in root and extension. | ||
file_root, file_ext = os.path.splitext(file_name) | ||
|
||
# Create the template file-name for the output images. | ||
new_file_name = file_root + "-%4d.jpg" | ||
|
||
# Complete file-path for the output images incl. all sub-dirs. | ||
new_file_path = os.path.join(new_dir, new_file_name) | ||
|
||
# Clean up the path by removing e.g. "/./" | ||
new_file_path = os.path.normpath(new_file_path) | ||
|
||
# Print status. | ||
print("Converting video to images:") | ||
print("- Input video: {0}".format(in_file)) | ||
print("- Output images: {0}".format(new_file_path)) | ||
|
||
# Command to be run in the shell for the video-conversion tool. | ||
cmd = "avconv -i {0} -r {1} -vf crop={2}:{2} -vf scale={3}:{3} -qscale 2 {4}" | ||
|
||
# Fill in the arguments for the command-line. | ||
cmd = cmd.format(in_file, framerate, crop_size, out_size, new_file_path) | ||
|
||
# Run the command-line in a shell. | ||
subprocess.call(cmd, shell=True) | ||
|
||
# Increase the number of videos processed. | ||
video_count += 1 | ||
|
||
# Print newline. | ||
print() | ||
|
||
print("Number of videos converted: {0}".format(video_count)) | ||
|
||
|
||
######################################################################## | ||
# This script allows you to run the video-conversion from the command-line. | ||
|
||
if __name__ == "__main__": | ||
# Argument description. | ||
desc = "Convert videos to images. " \ | ||
"Recursively processes all sub-dirs of INDIR " \ | ||
"and replicates the dir-structure to OUTDIR. " \ | ||
"The video is first cropped to CROP:CROP pixels, " \ | ||
"then resized to SIZE:SIZE pixels and written as a jpeg-file. " | ||
|
||
# Create the argument parser. | ||
parser = argparse.ArgumentParser(description=desc) | ||
|
||
# Add arguments to the parser. | ||
parser.add_argument("--indir", required=True, | ||
help="input directory where videos are located") | ||
|
||
parser.add_argument("--outdir", required=True, | ||
help="output directory where images will be saved") | ||
|
||
parser.add_argument("--crop", required=True, type=int, | ||
help="the input videos are first cropped to CROP:CROP pixels") | ||
|
||
parser.add_argument("--size", required=True, type=int, | ||
help="the input videos are then resized to SIZE:SIZE pixels") | ||
|
||
parser.add_argument("--rate", required=False, type=int, default=5, | ||
help="the number of frames to convert per second") | ||
|
||
parser.add_argument("--exts", required=False, nargs="+", | ||
help="list of extensions for video-files e.g. .mts .mp4") | ||
|
||
# Parse the command-line arguments. | ||
args = parser.parse_args() | ||
|
||
# Get the arguments. | ||
in_dir = args.indir | ||
out_dir = args.outdir | ||
crop_size = args.crop | ||
out_size = args.size | ||
framerate = args.rate | ||
video_exts = args.exts | ||
|
||
if video_exts is None: | ||
# Default extensions for video-files. | ||
video_exts = (".MTS", ".mp4") | ||
else: | ||
# A list of strings is provided as a command-line argument, but we | ||
# need a tuple instead of a list, so convert it to a tuple. | ||
video_exts = tuple(video_exts) | ||
|
||
# Print the arguments. | ||
print("Convert videos to images.") | ||
print("- Input dir: " + in_dir) | ||
print("- Output dir: " + out_dir) | ||
print("- Crop width and height: {0}".format(crop_size)) | ||
print("- Resize width and height: {0}".format(out_size)) | ||
print("- Frame-rate: {0}".format(framerate)) | ||
print("- Video extensions: {0}".format(video_exts)) | ||
print() | ||
|
||
# Perform the conversions. | ||
video2images(in_dir=in_dir, out_dir=out_dir, | ||
crop_size=crop_size, out_size=out_size, | ||
framerate=framerate, video_exts=video_exts) | ||
|
||
######################################################################## |
Oops, something went wrong.