Skip to content

Commit

Permalink
Create Day 13 SVM.md
Browse files Browse the repository at this point in the history
  • Loading branch information
Avik-Jain authored Jul 19, 2018
1 parent 439a7df commit d16934c
Showing 1 changed file with 93 additions and 0 deletions.
93 changes: 93 additions & 0 deletions Code/Day 13 SVM.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
# Day 13 | Support Vector Machine (SVM)

## Importing the libraries
```python
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
```

## Importing the dataset
```python
dataset = pd.read_csv('Social_Network_Ads.csv')
X = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values
```

## Splitting the dataset into the Training set and Test set
```python
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
```

## Feature Scaling
```python
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```

## Fitting SVM to the Training set
```python
from sklearn.svm import SVC
classifier = SVC(kernel = 'linear', random_state = 0)
classifier.fit(X_train, y_train)
```
## Predicting the Test set results
```python
y_pred = classifier.predict(X_test)
```

## Making the Confusion Matrix
```python
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
```

## Visualising the Training set results

```python
from matplotlib.colors import ListedColormap
X_set, y_set = X_train, y_train
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('SVM (Training set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
```
<p align="center">
<img src="https://github.com/Avik-Jain/100-Days-Of-ML-Code/blob/master/Other%20Docs/ets.png">
</p>

## Visualising the Test set results
```python
from matplotlib.colors import ListedColormap
X_set, y_set = X_test, y_test
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('SVM (Test set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
```
<p align="center">
<img src="https://github.com/Avik-Jain/100-Days-Of-ML-Code/blob/master/Other%20Docs/test.png">
</p>

0 comments on commit d16934c

Please sign in to comment.