SAUNA: Image-level Regression for Uncertainty-aware Retinal Image Segmentation
We provide file env.yaml
for dependencies.
conda env create -f env.yaml
conda activate sauna
pip install -e .
cd mlpipeline/utils
python split_fives.py
cd mlpipeline/utils
python ./generate_uncertainty_masks.py --root <ROOT_DIR> --in_dir <GT_DIR>
The labels are available at URL.
python -m mlpipeline.train.run experiment=${EXP_NAME} \
model.params.cfg.arch=${ARCH_NAME}
where
- EXP_NAME: experiment setting can be
fives_uncertainty_sem_seg
(ours),fives_patch_sem_seg
(for high-resolution-based methods), orfives_whole_sem_seg
(for low-resolution-based methods). - ARCH_NAME: architecture name can be
Unet
,UnetPlusPlus
,IterNet
,CTF-Net
,CE-Net
,DUnet
,FR-Unet
,DA-Net
, orSwin-Unet
.
python -m mlpipeline.train.evaluate \
--config=${EXP_NAME} \
--output_dir=/path/to/inference_results/${EXP_NAME} \
--log_dir=/path/to/eval/${EXP_NAME} \
--visual_dir=/path/to/visuals \
--metadata_path=/path/to/test_split.pkl \
--dataset_name=${DATASET} \
--seeds=${SEEDS} \
--folds=0,1,2,3,4
where
- DATASET: is either
FIVES
,STARE
,DRIVE
,CHASEDB1
, orHRF
.