Skip to content
/ XNNPACK Public
forked from google/XNNPACK

High-efficiency floating-point neural network inference operators for mobile, server, and Web

License

Notifications You must be signed in to change notification settings

iranpy/XNNPACK

 
 

Repository files navigation

XNNPACK

XNNPACK is a highly optimized library of floating-point neural network inference operators for ARM, WebAssembly, and x86 platforms. XNNPACK is not intended for direct use by deep learning practitioners and researchers; instead it provides low-level performance primitives for accelerating high-level machine learning frameworks, such as TensorFlow Lite, TensorFlow.js, PyTorch, and MediaPipe.

Supported Architectures

  • ARM64 on Android, Linux, and iOS (including WatchOS and tvOS)
  • ARMv7 (with NEON) on Android, Linux, and iOS (including WatchOS)
  • WebAssembly MVP
  • WebAssembly SIMD (experimental)
  • x86 and x86-64 (up to AVX512) on Android, Linux, macOS, and iOS simulator

Operator Coverage

XNNPACK implements the following neural network operators:

  • 2D Convolution (including grouped and depthwise)
  • 2D Deconvolution (AKA Transposed Convolution)
  • 2D Average Pooling
  • 2D Max Pooling
  • 2D ArgMax Pooling (Max Pooling + indices)
  • 2D Unpooling
  • 2D Bilinear Resize
  • Add (including broadcasting, two inputs only)
  • Subtract (including broadcasting)
  • Divide (including broadcasting)
  • Maximum (including broadcasting)
  • Minimum (including broadcasting)
  • Multiply (including broadcasting)
  • Global Average Pooling
  • Channel Shuffle
  • Fully Connected
  • Clamp (includes ReLU and ReLU6)
  • HardSwish
  • Sigmoid
  • Softmax
  • PReLU

All operators in XNNPACK support NHWC layout, but additionally allow custom stride along the Channel dimension. Thus, operators can consume a subset of channels in the input tensor, and produce a subset of channels in the output tensor, providing a zero-cost Channel Split and Channel Concatenation operations.

Performance

Mobile phones

The table below presents single-threaded performance of XNNPACK library on three generations of MobileNet models and three generations of Pixel phones.

Model Pixel, ms Pixel 2, ms Pixel 3a, ms
MobileNet v1 1.0X 82 86 88
MobileNet v2 1.0X 49 53 55
MobileNet v3 Large 39 42 44
MobileNet v3 Small 12 14 14

The following table presents multi-threaded (using as many threads as there are big cores) performance of XNNPACK library on three generations of MobileNet models and three generations of Pixel phones.

Model Pixel, ms Pixel 2, ms Pixel 3a, ms
MobileNet v1 1.0X 43 27 46
MobileNet v2 1.0X 26 18 28
MobileNet v3 Large 22 16 24
MobileNet v3 Small 7 6 8

Benchmarked on March 27, 2020 with end2end_bench --benchmark_min_time=5 on an Android/ARM64 build with Android NDK r21 (bazel build -c opt --config android_arm64 :end2end_bench) and neural network models with randomized weights and inputs.

Raspberry Pi

The table below presents multi-threaded performance of XNNPACK library on three generations of MobileNet models and three generations of Raspberry Pi boards.

Model RPi 2 (BCM2836), ms RPi 3+ (BCM2837B0), ms RPi 4 (BCM2711), ms
MobileNet v1 1.0X 341 115 75
MobileNet v2 1.0X 197 79 44
MobileNet v3 Large 165 67 41
MobileNet v3 Small 53 23 14

Benchmarked on February 12, 2020 with end2end-bench --benchmark_min_time=5 on a Raspbian Buster build with CMake (./scripts/build-local.sh) and neural network models with randomized weights and inputs.

Publications

Ecosystem

Machine Learning Frameworks

Acknowledgements

XNNPACK is a based on QNNPACK library. Unlike QNNPACK, XNNPACK focuses entirely on floating-point operators, and its API is no longer compatible with QNNPACK.

About

High-efficiency floating-point neural network inference operators for mobile, server, and Web

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C 49.1%
  • C++ 43.0%
  • Assembly 4.6%
  • Python 1.3%
  • Shell 0.8%
  • Starlark 0.6%
  • CMake 0.6%