Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add a test for training MNIST on CUDA and CPU that verifies same result as Jax #43

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
260 changes: 260 additions & 0 deletions tests/mnist_train_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,260 @@
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import jax
import os
import numpy.random as npr
from examples import datasets
from iree import runtime as iree_rt
import jax.core
import jax.numpy as jnp
from jax import grad, random
from jax.example_libraries import optimizers, stax
from jax.example_libraries.stax import Dense, Relu, LogSoftmax
from jax.tree_util import tree_flatten
from iree.jax import (
like,
kernel,
IREE,
Program,
)
from tempfile import TemporaryDirectory
import numpy as np
from typing import Any, Callable
import unittest


def get_example_batch():
batch_size = 128
train_images, train_labels, test_images, test_labels = datasets.mnist()
num_train = train_images.shape[0]
num_complete_batches, leftover = divmod(num_train, batch_size)
num_batches = num_complete_batches + bool(leftover)

def data_stream():
rng = npr.RandomState(0)
while True:
perm = rng.permutation(num_train)
for i in range(num_batches):
batch_idx = perm[i * batch_size:(i + 1) * batch_size]
yield train_images[batch_idx], train_labels[batch_idx]

batches = data_stream()
return next(batches)


def get_model():
Copy link
Contributor

@wangkuiyi wangkuiyi Feb 3, 2023

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thank you @sogartar for this pull request! It seems that this function duplicates with the one

def build_model():
init_random_params, predict = stax.serial(
Dense(1024),
Relu,
Dense(1024),
Relu,
Dense(10),
LogSoftmax,
)
Is it a good idea to add a test for that file?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes, I copied the model from there. I guess mnist_export.py example can benefit from a test too.

init_random_params, predict = stax.serial(
Dense(128),
Relu,
Dense(128),
Relu,
Dense(10),
LogSoftmax,
)
return init_random_params, predict


def loss(params, batch, predict_fn):
inputs, targets = batch
preds = predict_fn(params, inputs)
return -jnp.mean(jnp.sum(preds * targets, axis=1))


def create_iree_jax_module():
init_random_params, forward = get_model()

rng = random.PRNGKey(12345)
_, init_params = init_random_params(rng, (-1, 28 * 28))
opt_init, opt_update, opt_get_params = optimizers.momentum(0.001, mass=0.9)
opt_state = opt_init(init_params)

example_batch = get_example_batch()

class IreeJaxMnistModule(Program):
_opt_state = opt_state

def get_params(self):
return opt_get_params(self._opt_state)

def get_opt_state(self):
return self._opt_state

def set_opt_state(self, new_opt_state=like(opt_state)):
self._opt_state = new_opt_state

def initialize(self, rng=like(rng)):
self._opt_state = self._initialize_optimizer(rng)

def update(self, batch=like(example_batch)):
new_opt_state = self._update_step(batch, self._opt_state)
self._opt_state = new_opt_state

def forward(self, inputs=like(example_batch[0])):
return self._forward(opt_get_params(self._opt_state), inputs)

@kernel
def _initialize_optimizer(rng):
_, init_params = init_random_params(rng, (-1, 28 * 28))
return opt_init(init_params)

@kernel
def _update_step(batch, opt_state):
params = opt_get_params(opt_state)
return opt_update(0, grad(loss)(params, batch, forward), opt_state)

@kernel
def _forward(params, inputs):
return forward(params, inputs)

return IreeJaxMnistModule()


def build_iree_module(artifacts_dir,
backend: str = "llvm-cpu",
runtime: str = "local-task"):
module = create_iree_jax_module()
with open(os.path.join(artifacts_dir, "mnist_train.mlir"), "wb") as f:
Program.get_mlir_module(module).operation.print(f, binary=True)
binary = IREE.compile_program(module, backends=[backend], runtime=runtime)
iree_vmfb_path = os.path.join(artifacts_dir, "mnist_train.vmfb")
with open(iree_vmfb_path, "wb") as f:
f.write(binary.compiled_artifact)
loaded_module = iree_rt.system_api.load_vm_flatbuffer_file(iree_vmfb_path,
driver=runtime)
return loaded_module


def build_jax_module():
init_random_params, forward = get_model()

rng = random.PRNGKey(12345)
_, init_params = init_random_params(rng, (-1, 28 * 28))
opt_init, opt_update, opt_get_params = optimizers.momentum(0.001, mass=0.9)
opt_state = opt_init(init_params)

example_batch = get_example_batch()

class JaxMnistModule:
_opt_state = opt_state

def get_params(self):
return opt_get_params(self._opt_state)

def get_opt_state(self):
return self._opt_state

def set_opt_state(self, new_opt_state):
self._opt_state = new_opt_state

def initialize(self, rng):
self._opt_state = JaxMnistModule._initialize_optimizer(rng)

def update(self, batch):
new_opt_state = JaxMnistModule._update_step(batch, self._opt_state)
self._opt_state = new_opt_state

def forward(self, inputs):
return JaxMnistModule._forward(opt_get_params(self._opt_state), inputs)

@jax.jit
def _initialize_optimizer(rng):
_, init_params = init_random_params(rng, (-1, 28 * 28))
return opt_init(init_params)

@jax.jit
def _update_step(batch, opt_state):
params = opt_get_params(opt_state)
return opt_update(0, grad(loss)(params, batch, forward), opt_state)

@jax.jit
def _forward(params, inputs):
return forward(params, inputs)

return JaxMnistModule()


def assert_array_almost_equal(a, b):
np_a = np.asarray(a)
np_b = np.asarray(b)
# Test for absolute error.
np.testing.assert_array_almost_equal(np_a, np_b, decimal=5)
# Test for relative error while ignoring false positives from
# catastrophic cancellation.
np.testing.assert_array_almost_equal_nulp(np.abs(np_a - np_b) + 10**-7,
np.zeros_like(np_a),
nulp=10**8)


def assert_array_list_equal(
a,
b,
array_compare_fn: Callable[[Any, Any],
None] = np.testing.assert_array_equal):
assert (len(a) == len(b))
for x, y in zip(a, b):
array_compare_fn(x, y)


def assert_array_list_almost_equal(a, b):
assert_array_list_equal(a, b, assert_array_almost_equal)


def train_mnist_test(backend: str, runtime: str):
"""Run a training step on the same model with both Jax and IREE and
verify that results are the same."""

example_batch = get_example_batch()

with TemporaryDirectory() as tmp_dir:
iree_module = build_iree_module(artifacts_dir=tmp_dir,
backend=backend,
runtime=runtime)
jax_module = build_jax_module()

# Check state is the same
assert_array_list_equal(iree_module.get_opt_state(),
tree_flatten(jax_module.get_opt_state())[0])

# Check one training step.
iree_module.update(*example_batch)
jax_module.update(example_batch)
assert_array_list_almost_equal(iree_module.get_opt_state(),
tree_flatten(jax_module.get_opt_state())[0])

# Check inference.
iree_module.set_opt_state(*tree_flatten(jax_module.get_opt_state())[0])
prediction_iree = iree_module.forward(example_batch[0])
prediction_jax = jax_module.forward(example_batch[0])
assert_array_almost_equal(prediction_iree, prediction_jax)

# Check intialization.
rng = random.PRNGKey(6789)
iree_module.initialize(np.asarray(rng, dtype=np.int32))
jax_module.initialize(rng)
assert_array_list_almost_equal(iree_module.get_opt_state(),
tree_flatten(jax_module.get_opt_state())[0])


class MnistTrainTest(unittest.TestCase):

def test_train_mnist_cuda(self):
train_mnist_test(backend="cuda", runtime="cuda")

def test_train_mnist_llvm_cpu(self):
train_mnist_test(backend="llvm-cpu", runtime="local-task")


if __name__ == "__main__":
unittest.main()