Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add experimental code for custom attention op #81

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
93 changes: 93 additions & 0 deletions experimental/attention.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
# Copyright 2024 The IREE Authors
#
# Licensed under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

from functools import partial

from jax._src import core
from jax._src import dispatch
from jax._src.core import ShapedArray
from jax._src.interpreters import mlir as jax_mlir
from jax._src.typing import Array
from jax.interpreters import mlir
from jax.interpreters.mlir import ir
from jaxlib.hlo_helpers import custom_call


#########################################
# Created Primitives for IREE attention #
#########################################

iree_attention_p = core.Primitive('iree_attention')
iree_attention_p.def_impl(partial(dispatch.apply_primitive, iree_attention_p))

transpose_v = False
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Should this be a global here?



def _check_rank(x, rank):
if x.ndim != rank:
raise ValueError(f'Expected {rank} dimensions, got {x.ndim}')


def _iree_attention(
query,
key,
value,
scale,
):
for x in [query, key, value]:
_check_rank(x, 3)
out = iree_attention_p.bind(query, key, value, scale)
return out

####################
# Lowering to MLIR #
####################

def iree_attention_lowering(
ctx,
query,
key,
value,
scale,
):

"""Builds a custom IREE attentionOp."""
rw = custom_call(
'iree_attention',
result_types=[ir.RankedTensorType(query.type)],
operands=[query, key, value, scale],
extra_attributes={'transpose_v': ir.BoolAttr.get(transpose_v)},
)
return rw.results


mlir.register_lowering(
iree_attention_p, iree_attention_lowering, platform='iree_cpu'
)

#######################
# Abstract evaluation #
#######################


def _iree_attention_abstract_eval_rule(query, key, value, scale):
return ShapedArray(query.shape, query.dtype)

iree_attention_p.def_abstract_eval(_iree_attention_abstract_eval_rule)

######################
# Top-level interface#
######################


def iree_attention(
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is this the one users would then call explicitly? So one needs to change the model to use it? (potentially wrapped inside some function which dispatches either to the IREE one or a generic one so that they could still test without IREE)

query,
key,
value,
scale,
) -> Array:
return _iree_attention(query, key, value, scale)

48 changes: 48 additions & 0 deletions experimental/attention_call.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
# Copyright 2022 The IREE Authors
#
# Licensed under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

import jax
import jax.numpy as jnp
import attention
from jax._src.interpreters import mlir as jax_mlir
from jax._src.lib.mlir import ir
from jax.experimental import export


def export_iree_attention(query, key, value, scale):
inputs = (query_in, key_in, value_in, scale_in)
input_shapes = [
jax.ShapeDtypeStruct(input.shape, input.dtype) for input in inputs
]
att = export.export(
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Should this be some generic IREE export somewhere? E.g., have list of "allowed for IREE export" custom calls listed somwehere. Then one always does iree.jax.export instead of jax.experimental.export.

attention.iree_attention,
lowering_platforms=['iree_cpu'],
disabled_checks=[
export.DisabledSafetyCheck.custom_call('iree_attention')
],
)(*input_shapes).mlir_module()
return att

def get_asm(module_str):
with jax_mlir.make_ir_context():
stablehlo_module = ir.Module.parse(
module_str, context=jax_mlir.make_ir_context()
)
return stablehlo_module.operation.get_asm(large_elements_limit=20)

query_in = jnp.array(
[[[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8], [0.9, 1.0, 1.1, 1.2]]]
)
key_in = jnp.array(
[[[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8], [0.9, 1.0, 1.1, 1.2]]]
)
value_in = jnp.array(
[[[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8], [0.9, 1.0, 1.1, 1.2]]]
)
scale_in = jnp.float32(0.5)

print(get_asm(export_iree_attention(query_in, key_in, value_in, scale_in)))

Loading