Binaryen is a compiler and toolchain infrastructure library for WebAssembly, written in C++. It aims to make compiling to WebAssembly easy, fast, and effective:
-
Easy: Binaryen has a simple C API in a single header, and can also be used from JavaScript. It accepts input in WebAssembly-like form but also accepts a general control flow graph for compilers that prefer that.
-
Fast: Binaryen's internal IR uses compact data structures and is designed for completely parallel codegen and optimization, using all available CPU cores. Binaryen's IR also compiles down to WebAssembly extremely easily and quickly because it is essentially a subset of WebAssembly.
-
Effective: Binaryen's optimizer has many passes that can improve code very significantly (e.g. local coloring to coalesce local variables; dead code elimination; precomputing expressions when possible at compile time; etc.). These optimizations aim to make Binaryen powerful enough to be used as a compiler backend by itself. One specific area of focus is on WebAssembly-specific optimizations (that general-purpose compilers might not do), which you can think of as wasm minification , similar to minification for JavaScript, CSS, etc., all of which are language-specific (an example of such an optimization is block return value generation in
SimplifyLocals
).
Compilers built using Binaryen include
asm2wasm
which compiles asm.js to WebAssemblyAssemblyScript
which compiles TypeScript to Binaryen IRwasm2js
which compiles WebAssembly to JSAsterius
which compiles Haskell to WebAssembly
Binaryen also provides a set of toolchain utilities that can
- Parse and emit WebAssembly. In particular this lets you load WebAssembly, optimize it using Binaryen, and re-emit it, thus implementing a wasm-to-wasm optimizer in a single command.
- Interpret WebAssembly as well as run the WebAssembly spec tests.
- Integrate with Emscripten in order to provide a complete compiler toolchain from C and C++ to WebAssembly.
- Polyfill WebAssembly by running it in the interpreter compiled to JavaScript, if the browser does not yet have native support (useful for testing).
Consult the contributing instructions if you're interested in participating.
Binaryen's internal IR is designed to be
- Flexible and fast for optimization.
- As close as possible to WebAssembly so it is simple and fast to convert it to and from WebAssembly.
There are a few differences between Binaryen IR and the WebAssembly language:
- Tree structure
- Binaryen IR is a tree, i.e., it has hierarchical structure, for convenience of optimization. This differs from the WebAssembly binary format which is a stack machine.
- Consequently Binaryen's text format allows only s-expressions. WebAssembly's official text format is primarily a linear instruction list (with s-expression extensions). Binaryen can't read the linear style, but it can read a wasm text file if it contains only s-expressions.
- Binaryen uses Stack IR to optimize "stacky" code (that can't be represented in structured form).
- In rare cases stacky code must be represented in Binaryen IR as well, like
popping a value in an exception catch. To support that Binaryen IR has
push
andpop
instructions.
- Types and unreachable code
- WebAssembly limits block/if/loop types to none and the concrete value types
(i32, i64, f32, f64). Binaryen IR has an unreachable type, and it allows
block/if/loop to take it, allowing local transforms that don't need to
know the global context. As a result, Binaryen's default
text output is not necessarily valid wasm text. (To get valid wasm text,
you can do
--generate-stack-ir --print-stack-ir
, which prints Stack IR, this is guaranteed to be valid for wasm parsers.) - Binaryen ignores unreachable code when reading WebAssembly binaries. That means that if you read a wasm file with unreachable code, that code will be discarded as if it were optimized out (often this is what you want anyhow, and optimized programs have no unreachable code anyway, but if you write an unoptimized file and then read it, it may look different). The reason for this behavior is that unreachable code in WebAssembly has corner cases that are tricky to handle in Binaryen IR (it can be very unstructured, and Binaryen IR is more structured than WebAssembly as noted earlier). Note that Binaryen does support unreachable code in .wat text files, since as we saw Binaryen only supports s-expressions there, which are structured.
- WebAssembly limits block/if/loop types to none and the concrete value types
(i32, i64, f32, f64). Binaryen IR has an unreachable type, and it allows
block/if/loop to take it, allowing local transforms that don't need to
know the global context. As a result, Binaryen's default
text output is not necessarily valid wasm text. (To get valid wasm text,
you can do
- Blocks
- Binaryen IR has only one node that contains a variable-length list of operands: the block. WebAssembly on the other hand allows lists in loops, if arms, and the top level of a function. Binaryen's IR has a single operand for all non-block nodes; this operand may of course be a block. The motivation for this property is that many passes need special code for iterating on lists, so having a single IR node with a list simplifies them.
- As in wasm, blocks and loops may have names. Branch targets in the IR are
resolved by name (as opposed to nesting depth). This has 2 consequences:
- Blocks without names may not be branch targets.
- Names are required to be unique. (Reading .wat files with duplicate names is supported; the names are modified when the IR is constructed).
- As an optimization, a block that is the child of a loop (or if arm, or function toplevel) and which has no branches targeting it will not be emitted when generating wasm. Instead its list of operands will be directly used in the containing node. Such a block is sometimes called an "implicit block".
- Multivalue
- Binaryen will not represent multivalue instructions and values directly. Binaryen's main focus is on optimization of wasm, and therefore the question of whether we should have multivalue in the main IR is whether it justifes the extra complexity there. Experiments show that the shrinking of code size thanks to multivalue is useful but small, just 1-3% or so. Given that, we prefer to keep the main IR simple, and focus on multivalue optimizations in Stack IR, which is more suitable for such things.
- Binaryen does still need to implement the "ABI" level of multivalue, that
is, we need multivalue calls because those may cross module boundaries,
and so they are observable externally. To support that, Binaryen may use
push
andpop
as mentioned earlier; another option is to add LLVM-likeextractvalue/composevalue
instructions.
As a result, you might notice that round-trip conversions (wasm => Binaryen IR => wasm) change code a little in some corner cases.
- When optimizing Binaryen uses an additional IR, Stack IR (see
src/wasm-stack.h
). Stack IR allows a bunch of optimizations that are tailored for the stack machine form of WebAssembly's binary format (but Stack IR is less efficient for general optimizations than the main Binaryen IR). If you have a wasm file that has been particularly well-optimized, a simple round-trip conversion (just read and write, without optimization) may cause more noticeable differences, as Binaryen fits it into Binaryen IR's more structured format. If you also optimize during the round-trip conversion then Stack IR opts will be run and the final wasm will be better optimized.
Notes when working with Binaryen IR:
- As mentioned above, Binaryen IR has a tree structure. As a result, each expression should have exactly one parent - you should not "reuse" a node by having it appear more than once in the tree. The motivation for this limitation is that when we optimize we modify nodes, so if they appear more than once in the tree, a change in one place can appear in another incorrectly.
- For similar reasons, nodes should not appear in more than one functions.
This repository contains code that builds the following tools in bin/
:
- wasm-opt: Loads WebAssembly and runs Binaryen IR passes on it.
- wasm-as: Assembles WebAssembly in text format (currently S-Expression format) into binary format (going through Binaryen IR).
- wasm-dis: Un-assembles WebAssembly in binary format into text format (going through Binaryen IR).
- wasm2js: A WebAssembly-to-JS compiler. This is used by Emscripten to generate JavaScript as an alternative to WebAssembly.
- wasm-shell: A shell that can load and interpret WebAssembly code. It can also run the spec test suite.
- wasm-emscripten-finalize: Takes a wasm binary produced by llvm+lld and performs emscripten-specific passes over it.
- asm2wasm: An asm.js-to-WebAssembly compiler, using Emscripten's asm optimizer infrastructure. This is used by Emscripten in Binaryen mode when it uses Emscripten's fastcomp asm.js backend.
- wasm-ctor-eval: A tool that can execute C++ global constructors ahead of time. Used by Emscripten.
- binaryen.js: A standalone JavaScript library that exposes Binaryen methods for creating and optimizing WASM modules. For builds, see binaryen.js on npm (or download it directly from github, rawgit, or unpkg).
Usage instructions for each are below.
cmake . && make
Note that you can also use ninja
as your generator: cmake -G Ninja . && ninja
- A C++11 compiler is required.
- The JavaScript components can be built using
build-js.sh
, see notes inside. Normally this is not needed as builds are provided in this repo already.
If you also want to compile C/C++ to WebAssembly (and not just asm.js to WebAssembly), you'll need Emscripten. You'll need the incoming
branch there (which you can get via the SDK), for more details see the wiki.
-
Using the Microsoft Visual Studio Installer, install the "Visual C++ tools for CMake" component.
-
Generate the projects:
mkdir build cd build "%VISUAL_STUDIO_ROOT%\Common7\IDE\CommonExtensions\Microsoft\CMake\CMake\bin\cmake.exe" ..
Substitute VISUAL_STUDIO_ROOT with the path to your Visual Studio installation. In case you are using the Visual Studio Build Tools, the path will be "C:\Program Files (x86)\Microsoft Visual Studio\2017\BuildTools".
-
From the Developer Command Prompt, build the desired projects:
msbuild binaryen.vcxproj
CMake generates a project named "ALL_BUILD.vcxproj" for conveniently building all the projects.
Run
bin/wasm-opt [.wasm or .wat file] [options] [passes, see --help] [--help]
The wasm optimizer receives WebAssembly as input, and can run transformation passes on it, as well as print it (before and/or after the transformations). For example, try
bin/wasm-opt test/passes/lower-if-else.wast --print
That will pretty-print out one of the test cases in the test suite. To run a transformation pass on it, try
bin/wasm-opt test/passes/lower-if-else.wast --print --lower-if-else
The lower-if-else
pass lowers if-else into a block and a break. You can see
the change the transformation causes by comparing the output of the two print
commands.
It's easy to add your own transformation passes to the shell, just add .cpp
files into src/passes
, and rebuild the shell. For example code, take a look at
the lower-if-else
pass.
Some more notes:
- See
bin/wasm-opt --help
for the full list of options and passes. - Passing
--debug
will emit some debugging info.
Run
bin/wasm2js [input.wasm file]
This will print out JavaScript to the console.
For example, try
$ bin/wasm2js test/hello_world.wast
That output contains
function add(x, y) {
x = x | 0;
y = y | 0;
return x + y | 0 | 0;
}
as a translation of
(func $add (; 0 ;) (type $0) (param $x i32) (param $y i32) (result i32)
(i32.add
(local.get $x)
(local.get $y)
)
)
You can also tell wasm2js to optimize, using the normal optimization flags
wasm-opt and other tools receive (such as -Os
). For optimal code size,
you should both optimize and run a JavaScript minifier afterwards.
Things to keep in mind with wasm2js's output:
- It is not possible to match WebAssemblty semantics 100% precisely with fast JavaScript code. For example, every load and store may trap, and to make JavaScript do the same we'd need to add checks everywhere, which would be large and slow. Instead, wasm2js assumes loads and stores do not trap, that int/float conversions do not trap, and so forth. There may also be slight differences in corner cases of conversions, like non-trapping float to int.
Run
bin/asm2wasm [input.asm.js file]
This will print out a WebAssembly module in s-expression format to the console.
For example, try
$ bin/asm2wasm test/hello_world.asm.js
That input file contains
function () {
"use asm";
function add(x, y) {
x = x | 0;
y = y | 0;
return x + y | 0;
}
return { add: add };
}
You should see something like this:
By default you should see pretty colors as in that image. Set COLORS=0
in the
env to disable colors if you prefer that. On Linux and Mac, you can set
COLORS=1
in the env to force colors (useful when piping to more
, for
example). For Windows, pretty colors are only available when stdout/stderr
are
not redirected/piped.
Pass --debug
on the command line to see debug info, about asm.js functions as
they are parsed, etc.
When using emcc
with the BINARYEN
option, it will use Binaryen to build to
WebAssembly. This lets you compile C and C++ to WebAssembly, with emscripten
using asm.js internally as a build step. Since emscripten's asm.js generation is
very stable, and asm2wasm is a fairly simple process, this method of compiling C
and C++ to WebAssembly is usable already. See the emscripten
wiki for more details
about how to use it.
./check.py
(or python check.py
) will run wasm-shell
, wasm-opt
, asm2wasm
, etc. on the testcases in test/
, and verify their outputs.
The check.py
script supports some options:
./check.py [--interpreter=/path/to/interpreter] [TEST1] [TEST2]..
- If an interpreter is provided, we run the output through it, checking for parse errors.
- If tests are provided, we run exactly those. If none are provided, we run them all.
- Some tests require
emcc
ornodejs
in the path. They will not run if the tool cannot be found, and you'll see a warning. - We have tests from upstream in
tests/spec
, in git submodules. Running./check.py
should update those.
- Interned strings for names: It's very convenient to have names on nodes, instead of just numeric indices etc. To avoid most of the performance difference between strings and numeric indices, all strings are interned, which means there is a single copy of each string in memory, string comparisons are just a pointer comparison, etc.
- Allocate in arenas: Based on experience with other optimizing/transformating toolchains, it's not worth the overhead to carefully track memory of individual nodes. Instead, we allocate all elements of a module in an arena, and the entire arena can be freed when the module is no longer needed.
- Why the weird name for the project?
"Binaryen" is a combination of binary - since WebAssembly is a binary format
for the web - and Emscripten - with which it can integrate in order to
compile C and C++ all the way to WebAssembly, via asm.js. Binaryen began as
Emscripten's WebAssembly processing library (wasm-emscripten
).
"Binaryen" is pronounced in the same manner as "Targaryen": bi-NAIR-ee-in. Or something like that? Anyhow, however Targaryen is correctly pronounced, they should rhyme. Aside from pronunciation, the Targaryen house words, "Fire and Blood", have also inspired Binaryen's: "Code and Bugs."
- Does it compile under Windows and/or Visual Studio?
Yes, it does. Here's a step-by-step tutorial on how to compile it under Windows 10 x64 with with CMake and Visual Studio 2015. Help would be appreciated on Windows and OS X as most of the core devs are on Linux.