Skip to content

itsnine/yolov5-onnxruntime

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Dec 21, 2021
8d553de · Dec 21, 2021

History

54 Commits
Dec 14, 2021
Sep 25, 2021
Dec 14, 2021
Dec 17, 2021
Sep 24, 2021
Dec 17, 2021
Dec 21, 2021

Repository files navigation

yolov5-onnxruntime

C++ YOLO v5 ONNX Runtime inference code for object detection.

Dependecies:

  • OpenCV 4.x
  • ONNXRuntime 1.7+
  • OS: Tested on Windows 10 and Ubuntu 20.04
  • CUDA 11+ [Optional]

Build

To build the project you should run the following commands, don't forget to change ONNXRUNTIME_DIR cmake option:

mkdir build
cd build
cmake .. -DONNXRUNTIME_DIR=path_to_onnxruntime -DCMAKE_BUILD_TYPE=Release
cmake --build .

Run

Before running the executable you should convert your PyTorch model to ONNX if you haven't done it yet. Check the official tutorial.

On Windows: to run the executable you should add OpenCV and ONNX Runtime libraries to your environment path or put all needed libraries near the executable (onnxruntime.dll and opencv_world.dll).

Run from CLI:

./yolo_ort --model_path yolov5.onnx --image bus.jpg --class_names coco.names --gpu
# On Windows ./yolo_ort.exe with arguments as above

Demo

YOLOv5m onnx:

References