Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
pycaret authored Jan 27, 2020
1 parent 3f45602 commit ba9ab4c
Show file tree
Hide file tree
Showing 2 changed files with 65 additions and 30 deletions.
44 changes: 29 additions & 15 deletions classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -6699,26 +6699,30 @@ def predict_model(estimator,
#no active tests

#general dependencies
import sys
import numpy as np
import pandas as pd
import re
from sklearn import metrics
from copy import deepcopy
from IPython.display import clear_output, update_display

estimator = deepcopy(estimator)
clear_output()

if type(estimator) is str:
if platform == 'aws':
estimator = load_model(str(estimator), platform='aws',
estimator_ = load_model(str(estimator), platform='aws',
authentication={'bucket': authentication.get('bucket')},
verbose=False)

else:
estimator = load_model(str(estimator), verbose=False)
estimator_ = load_model(str(estimator), verbose=False)

estimator = deepcopy(estimator)
estimator_ = estimator
clear_output()
else:
estimator_ = estimator

if type(estimator_) is list:

if 'sklearn.pipeline.Pipeline' in str(type(estimator_[0])):
Expand All @@ -6728,17 +6732,28 @@ def predict_model(estimator,
estimator = estimator_[0]

else:

try:

prep_pipe_transformer = prep_pipe
model = estimator
estimator = estimator

except:

sys.exit("(Type Error): Transformation Pipe Missing. ")

else:

try:

prep_pipe_transformer = prep_pipe
model = estimator
estimator = estimator

else:

prep_pipe_transformer = prep_pipe
model = estimator
estimator = estimator

except:

sys.exit("(Type Error): Transformation Pipe Missing. ")

#dataset
if data is None:
Expand All @@ -6753,6 +6768,7 @@ def predict_model(estimator,
X_test_.reset_index(drop=True, inplace=True)
y_test_.reset_index(drop=True, inplace=True)

model = estimator
estimator_ = estimator

else:
Expand All @@ -6765,13 +6781,10 @@ def predict_model(estimator,

estimator_ = estimator


#try:
# model = finalize_model(estimator)
#except:
# model = estimator



if type(estimator) is list:

Expand Down Expand Up @@ -7198,3 +7211,4 @@ def putSpace(input):

return X_test_


51 changes: 36 additions & 15 deletions regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -5300,6 +5300,7 @@ def finalize_model(estimator):
return model_final



def save_model(model, model_name, verbose=True):

"""
Expand Down Expand Up @@ -5343,14 +5344,19 @@ def save_model(model, model_name, verbose=True):
"""

model_ = []
model_.append(prep_pipe)
model_.append(model)

import joblib
model_name = model_name + '.pkl'
joblib.dump(model, model_name)
joblib.dump(model_, model_name)
if verbose:
print('Transformation Pipeline and Model Succesfully Saved')




def load_model(model_name,
platform = None,
authentication = None,
Expand Down Expand Up @@ -5706,26 +5712,30 @@ def predict_model(estimator,
#no active tests

#general dependencies
import sys
import numpy as np
import pandas as pd
import re
from sklearn import metrics
from copy import deepcopy
from IPython.display import clear_output, update_display

estimator = deepcopy(estimator)
clear_output()

if type(estimator) is str:
if platform == 'aws':
estimator = load_model(str(estimator), platform='aws',
estimator_ = load_model(str(estimator), platform='aws',
authentication={'bucket': authentication.get('bucket')},
verbose=False)

else:
estimator = load_model(str(estimator), verbose=False)
estimator = deepcopy(estimator)
estimator_ = estimator
clear_output()

estimator_ = load_model(str(estimator), verbose=False)

else:
estimator_ = estimator
if type(estimator_) is list:

if 'sklearn.pipeline.Pipeline' in str(type(estimator_[0])):
Expand All @@ -5735,16 +5745,28 @@ def predict_model(estimator,
estimator = estimator_[0]

else:

try:

prep_pipe_transformer = prep_pipe
model = estimator
estimator = estimator

except:

sys.exit("(Type Error): Transformation Pipe Missing. ")

else:

try:

prep_pipe_transformer = prep_pipe
model = estimator
estimator = estimator

else:

prep_pipe_transformer = prep_pipe
model = estimator
estimator = estimator

except:

sys.exit("(Type Error): Transformation Pipe Missing. ")

#dataset
if data is None:
Expand All @@ -5771,7 +5793,6 @@ def predict_model(estimator,
X_test_.reset_index(drop=True, inplace=True)

estimator_ = estimator


#try:
# model = finalize_model(estimator)
Expand Down

0 comments on commit ba9ab4c

Please sign in to comment.