forked from apache/druid
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Allow IncrementalIndex to store Long/Float dimensions
- Loading branch information
Showing
8 changed files
with
502 additions
and
88 deletions.
There are no files selected for viewing
198 changes: 198 additions & 0 deletions
198
benchmarks/src/main/java/io/druid/benchmark/IncrementalIndexAddRowsBenchmark.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,198 @@ | ||
/* | ||
* Licensed to Metamarkets Group Inc. (Metamarkets) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. Metamarkets licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
package io.druid.benchmark; | ||
|
||
import com.google.common.collect.ImmutableMap; | ||
import io.druid.data.input.InputRow; | ||
import io.druid.data.input.MapBasedInputRow; | ||
import io.druid.granularity.QueryGranularity; | ||
import io.druid.query.aggregation.AggregatorFactory; | ||
import io.druid.query.aggregation.CountAggregatorFactory; | ||
import io.druid.query.aggregation.DoubleSumAggregatorFactory; | ||
import io.druid.query.aggregation.LongSumAggregatorFactory; | ||
import io.druid.segment.incremental.IncrementalIndex; | ||
import io.druid.segment.incremental.OnheapIncrementalIndex; | ||
import org.openjdk.jmh.annotations.Benchmark; | ||
import org.openjdk.jmh.annotations.BenchmarkMode; | ||
import org.openjdk.jmh.annotations.Level; | ||
import org.openjdk.jmh.annotations.Mode; | ||
import org.openjdk.jmh.annotations.OperationsPerInvocation; | ||
import org.openjdk.jmh.annotations.OutputTimeUnit; | ||
import org.openjdk.jmh.annotations.Scope; | ||
import org.openjdk.jmh.annotations.Setup; | ||
import org.openjdk.jmh.annotations.State; | ||
import org.openjdk.jmh.infra.Blackhole; | ||
|
||
import java.io.IOException; | ||
import java.util.ArrayList; | ||
import java.util.List; | ||
import java.util.Random; | ||
import java.util.concurrent.TimeUnit; | ||
|
||
@State(Scope.Benchmark) | ||
public class IncrementalIndexAddRowsBenchmark | ||
{ | ||
private IncrementalIndex incIndex; | ||
private IncrementalIndex incFloatIndex; | ||
private IncrementalIndex incStrIndex; | ||
private static AggregatorFactory[] aggs; | ||
static final int dimensionCount = 8; | ||
private Random rng; | ||
static final int maxRows = 250000; | ||
|
||
private ArrayList<InputRow> longRows = new ArrayList<InputRow>(); | ||
private ArrayList<InputRow> floatRows = new ArrayList<InputRow>(); | ||
private ArrayList<InputRow> stringRows = new ArrayList<InputRow>(); | ||
|
||
|
||
static { | ||
final ArrayList<AggregatorFactory> ingestAggregatorFactories = new ArrayList<>(dimensionCount + 1); | ||
ingestAggregatorFactories.add(new CountAggregatorFactory("rows")); | ||
for (int i = 0; i < dimensionCount; ++i) { | ||
ingestAggregatorFactories.add( | ||
new LongSumAggregatorFactory( | ||
String.format("sumResult%s", i), | ||
String.format("Dim_%s", i) | ||
) | ||
); | ||
ingestAggregatorFactories.add( | ||
new DoubleSumAggregatorFactory( | ||
String.format("doubleSumResult%s", i), | ||
String.format("Dim_%s", i) | ||
) | ||
); | ||
} | ||
aggs = ingestAggregatorFactories.toArray(new AggregatorFactory[0]); | ||
} | ||
|
||
private MapBasedInputRow getLongRow(long timestamp, int rowID, int dimensionCount) | ||
{ | ||
List<String> dimensionList = new ArrayList<String>(dimensionCount); | ||
ImmutableMap.Builder<String, Object> builder = ImmutableMap.builder(); | ||
for (int i = 0; i < dimensionCount; i++) { | ||
String dimName = String.format("Dim_%d", i); | ||
dimensionList.add(dimName); | ||
builder.put(dimName, rng.nextLong()); | ||
} | ||
return new MapBasedInputRow(timestamp, dimensionList, builder.build()); | ||
} | ||
|
||
private MapBasedInputRow getFloatRow(long timestamp, int rowID, int dimensionCount) | ||
{ | ||
List<String> dimensionList = new ArrayList<String>(dimensionCount); | ||
ImmutableMap.Builder<String, Object> builder = ImmutableMap.builder(); | ||
for (int i = 0; i < dimensionCount; i++) { | ||
String dimName = String.format("Dim_%d", i); | ||
dimensionList.add(dimName); | ||
builder.put(dimName, rng.nextFloat()); | ||
} | ||
return new MapBasedInputRow(timestamp, dimensionList, builder.build()); | ||
} | ||
|
||
private MapBasedInputRow getStringRow(long timestamp, int rowID, int dimensionCount) | ||
{ | ||
List<String> dimensionList = new ArrayList<String>(dimensionCount); | ||
ImmutableMap.Builder<String, Object> builder = ImmutableMap.builder(); | ||
for (int i = 0; i < dimensionCount; i++) { | ||
String dimName = String.format("Dim_%d", i); | ||
dimensionList.add(dimName); | ||
builder.put(dimName, String.valueOf(rng.nextLong())); | ||
} | ||
return new MapBasedInputRow(timestamp, dimensionList, builder.build()); | ||
} | ||
|
||
private IncrementalIndex makeIncIndex() | ||
{ | ||
return new OnheapIncrementalIndex( | ||
0, | ||
QueryGranularity.NONE, | ||
aggs, | ||
false, | ||
false, | ||
maxRows | ||
); | ||
} | ||
|
||
@Setup | ||
public void setup() throws IOException | ||
{ | ||
rng = new Random(9999); | ||
|
||
for (int i = 0; i < maxRows; i++) { | ||
longRows.add(getLongRow(0, i, dimensionCount)); | ||
} | ||
|
||
for (int i = 0; i < maxRows; i++) { | ||
floatRows.add(getFloatRow(0, i, dimensionCount)); | ||
} | ||
|
||
for (int i = 0; i < maxRows; i++) { | ||
stringRows.add(getStringRow(0, i, dimensionCount)); | ||
} | ||
} | ||
|
||
@Setup(Level.Iteration) | ||
public void setup2() throws IOException | ||
{ | ||
; | ||
incIndex = makeIncIndex(); | ||
incFloatIndex = makeIncIndex(); | ||
incStrIndex = makeIncIndex(); | ||
} | ||
|
||
@Benchmark | ||
@BenchmarkMode(Mode.AverageTime) | ||
@OutputTimeUnit(TimeUnit.MICROSECONDS) | ||
@OperationsPerInvocation(maxRows) | ||
public void normalLongs(Blackhole blackhole) throws Exception | ||
{ | ||
for (int i = 0; i < maxRows; i++) { | ||
InputRow row = longRows.get(i); | ||
int rv = incIndex.add(row); | ||
blackhole.consume(rv); | ||
} | ||
} | ||
|
||
@Benchmark | ||
@BenchmarkMode(Mode.AverageTime) | ||
@OutputTimeUnit(TimeUnit.MICROSECONDS) | ||
@OperationsPerInvocation(maxRows) | ||
public void normalFloats(Blackhole blackhole) throws Exception | ||
{ | ||
for (int i = 0; i < maxRows; i++) { | ||
InputRow row = floatRows.get(i); | ||
int rv = incFloatIndex.add(row); | ||
blackhole.consume(rv); | ||
} | ||
} | ||
|
||
@Benchmark | ||
@BenchmarkMode(Mode.AverageTime) | ||
@OutputTimeUnit(TimeUnit.MICROSECONDS) | ||
@OperationsPerInvocation(maxRows) | ||
public void normalStrings(Blackhole blackhole) throws Exception | ||
{ | ||
for (int i = 0; i < maxRows; i++) { | ||
InputRow row = stringRows.get(i); | ||
int rv = incStrIndex.add(row); | ||
blackhole.consume(rv); | ||
} | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.