forked from Element-Research/rnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
GRU.lua
251 lines (211 loc) · 8.49 KB
/
GRU.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
------------------------------------------------------------------------
--[[ GRU ]]--
-- Author: Jin-Hwa Kim
-- License: LICENSE.2nd.txt
-- Gated Recurrent Units architecture.
-- http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
-- Expects 1D or 2D input.
-- The first input in sequence uses zero value for cell and hidden state
--
-- For p > 0, it becomes Bayesian GRUs [Moon et al., 2015; Gal, 2015].
-- In this case, please do not dropout on input as BGRUs handle the input with
-- its own dropouts. First, try 0.25 for p as Gal (2016) suggested, presumably,
-- because of summations of two parts in GRUs connections.
------------------------------------------------------------------------
local GRU, parent = torch.class('nn.GRU', 'nn.AbstractRecurrent')
function GRU:__init(inputSize, outputSize, rho, p, mono)
parent.__init(self, rho or 9999)
self.p = p or 0
if p and p ~= 0 then
assert(nn.Dropout(p,false,false,true).lazy, 'only work with Lazy Dropout!')
end
self.mono = mono or false
self.inputSize = inputSize
self.outputSize = outputSize
-- build the model
self.recurrentModule = self:buildModel()
-- make it work with nn.Container
self.modules[1] = self.recurrentModule
self.sharedClones[1] = self.recurrentModule
-- for output(0), cell(0) and gradCell(T)
self.zeroTensor = torch.Tensor()
self.cells = {}
self.gradCells = {}
end
-------------------------- factory methods -----------------------------
function GRU:buildModel()
-- input : {input, prevOutput}
-- output : {output}
-- Calculate all four gates in one go : input, hidden, forget, output
if self.p ~= 0 then
self.i2g = nn.Sequential()
:add(nn.ConcatTable()
:add(nn.Dropout(self.p,false,false,true,self.mono))
:add(nn.Dropout(self.p,false,false,true,self.mono)))
:add(nn.ParallelTable()
:add(nn.Linear(self.inputSize, self.outputSize))
:add(nn.Linear(self.inputSize, self.outputSize)))
:add(nn.JoinTable(2))
self.o2g = nn.Sequential()
:add(nn.ConcatTable()
:add(nn.Dropout(self.p,false,false,true,self.mono))
:add(nn.Dropout(self.p,false,false,true,self.mono)))
:add(nn.ParallelTable()
:add(nn.LinearNoBias(self.outputSize, self.outputSize))
:add(nn.LinearNoBias(self.outputSize, self.outputSize)))
:add(nn.JoinTable(2))
else
self.i2g = nn.Linear(self.inputSize, 2*self.outputSize)
self.o2g = nn.LinearNoBias(self.outputSize, 2*self.outputSize)
end
local para = nn.ParallelTable():add(self.i2g):add(self.o2g)
local gates = nn.Sequential()
gates:add(para)
gates:add(nn.CAddTable())
-- Reshape to (batch_size, n_gates, hid_size)
-- Then slize the n_gates dimension, i.e dimension 2
gates:add(nn.Reshape(2,self.outputSize))
gates:add(nn.SplitTable(1,2))
local transfer = nn.ParallelTable()
transfer:add(nn.Sigmoid()):add(nn.Sigmoid())
gates:add(transfer)
local concat = nn.ConcatTable():add(nn.Identity()):add(gates)
local seq = nn.Sequential()
seq:add(concat)
seq:add(nn.FlattenTable()) -- x(t), s(t-1), r, z
-- Rearrange to x(t), s(t-1), r, z, s(t-1)
local concat = nn.ConcatTable() --
concat:add(nn.NarrowTable(1,4)):add(nn.SelectTable(2))
seq:add(concat):add(nn.FlattenTable())
-- h
local hidden = nn.Sequential()
local concat = nn.ConcatTable()
local t1 = nn.Sequential()
t1:add(nn.SelectTable(1))
local t2 = nn.Sequential()
t2:add(nn.NarrowTable(2,2)):add(nn.CMulTable())
if self.p ~= 0 then
t1:add(nn.Dropout(self.p,false,false,true,self.mono))
t2:add(nn.Dropout(self.p,false,false,true,self.mono))
end
t1:add(nn.Linear(self.inputSize, self.outputSize))
t2:add(nn.LinearNoBias(self.outputSize, self.outputSize))
concat:add(t1):add(t2)
hidden:add(concat):add(nn.CAddTable()):add(nn.Tanh())
local z1 = nn.Sequential()
z1:add(nn.SelectTable(4))
z1:add(nn.SAdd(-1, true)) -- Scalar add & negation
local z2 = nn.Sequential()
z2:add(nn.NarrowTable(4,2))
z2:add(nn.CMulTable())
local o1 = nn.Sequential()
local concat = nn.ConcatTable()
concat:add(hidden):add(z1)
o1:add(concat):add(nn.CMulTable())
local o2 = nn.Sequential()
local concat = nn.ConcatTable()
concat:add(o1):add(z2)
o2:add(concat):add(nn.CAddTable())
seq:add(o2)
return seq
end
function GRU:getHiddenState(step, input)
local prevOutput
if step == 0 then
prevOutput = self.userPrevOutput or self.outputs[step] or self.zeroTensor
if input then
if input:dim() == 2 then
self.zeroTensor:resize(input:size(1), self.outputSize):zero()
else
self.zeroTensor:resize(self.outputSize):zero()
end
end
else
-- previous output and cell of this module
prevOutput = self.outputs[step]
end
return prevOutput
end
function GRU:setHiddenState(step, hiddenState)
assert(torch.isTensor(hiddenState))
self.outputs[step] = hiddenState
end
------------------------- forward backward -----------------------------
function GRU:updateOutput(input)
local prevOutput = self:getHiddenState(self.step-1, input)
-- output(t) = gru{input(t), output(t-1)}
local output
if self.train ~= false then
self:recycle()
local recurrentModule = self:getStepModule(self.step)
-- the actual forward propagation
output = recurrentModule:updateOutput{input, prevOutput}
else
output = self.recurrentModule:updateOutput{input, prevOutput}
end
self.outputs[self.step] = output
self.output = output
self.step = self.step + 1
self.gradPrevOutput = nil
self.updateGradInputStep = nil
self.accGradParametersStep = nil
-- note that we don't return the cell, just the output
return self.output
end
function GRU:getGradHiddenState(step)
local gradOutput
if step == self.step-1 then
gradOutput = self.userNextGradOutput or self.gradOutputs[step] or self.zeroTensor
else
gradOutput = self.gradOutputs[step]
end
return gradOutput
end
function GRU:setGradHiddenState(step, gradHiddenState)
assert(torch.isTensor(gradHiddenState))
self.gradOutputs[step] = gradHiddenState
end
function GRU:_updateGradInput(input, gradOutput)
assert(self.step > 1, "expecting at least one updateOutput")
local step = self.updateGradInputStep - 1
assert(step >= 1)
-- set the output/gradOutput states of current Module
local recurrentModule = self:getStepModule(step)
-- backward propagate through this step
local _gradOutput = self:getGradHiddenState(step)
assert(_gradOutput)
self._gradOutputs[step] = nn.rnn.recursiveCopy(self._gradOutputs[step], _gradOutput)
nn.rnn.recursiveAdd(self._gradOutputs[step], gradOutput)
gradOutput = self._gradOutputs[step]
local gradInputTable = recurrentModule:updateGradInput({input, self:getHiddenState(step-1)}, gradOutput)
self:setGradHiddenState(step-1, gradInputTable[2])
return gradInputTable[1]
end
function GRU:_accGradParameters(input, gradOutput, scale)
local step = self.accGradParametersStep - 1
assert(step >= 1)
-- set the output/gradOutput states of current Module
local recurrentModule = self:getStepModule(step)
-- backward propagate through this step
local gradOutput = self._gradOutputs[step] or self:getGradHiddenState(step)
recurrentModule:accGradParameters({input, self:getHiddenState(step-1)}, gradOutput, scale)
end
function GRU:__tostring__()
return string.format('%s(%d -> %d, %.2f)', torch.type(self), self.inputSize, self.outputSize, self.p)
end
-- migrate GRUs params to BGRUs params
function GRU:migrate(params)
local _params = self:parameters()
assert(self.p ~= 0, 'only support for BGRUs.')
assert(#params == 6, '# of source params should be 6.')
assert(#_params == 9, '# of destination params should be 9.')
_params[1]:copy(params[1]:narrow(1,1,self.outputSize))
_params[2]:copy(params[2]:narrow(1,1,self.outputSize))
_params[3]:copy(params[1]:narrow(1,self.outputSize+1,self.outputSize))
_params[4]:copy(params[2]:narrow(1,self.outputSize+1,self.outputSize))
_params[5]:copy(params[3]:narrow(1,1,self.outputSize))
_params[6]:copy(params[3]:narrow(1,self.outputSize+1,self.outputSize))
_params[7]:copy(params[4])
_params[8]:copy(params[5])
_params[9]:copy(params[6])
end