forked from Element-Research/rnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
recurrent-time-series.lua
130 lines (103 loc) · 3.77 KB
/
recurrent-time-series.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
-- Multi-variate time-series example
require 'rnn'
cmd = torch.CmdLine()
cmd:text()
cmd:text('Train a multivariate time-series model using RNN')
cmd:option('--rho', 5, 'maximum number of time steps for back-propagate through time (BPTT)')
cmd:option('--multiSize', 6, 'number of random variables as input and output')
cmd:option('--hiddenSize', 10, 'number of hidden units used at output of the recurrent layer')
cmd:option('--dataSize', 100, 'total number of time-steps in dataset')
cmd:option('--batchSize', 8, 'number of training samples per batch')
cmd:option('--nIterations', 1000, 'max number of training iterations')
cmd:option('--learningRate', 0.001, 'learning rate')
cmd:option('--plot', false, 'plot the errors during training?')
cmd:text()
local opt = cmd:parse(arg or {})
if opt.plot then
require 'optim'
logger = optim.Logger(paths.concat('outputs', 'rects_log.txt'))
end
-- For simplicity, the multi-variate dataset in this example is independently distributed.
-- Toy dataset (task is to predict next vector, given previous vectors) following the normal distribution .
-- Generated by sampling a separate normal distribution for each random variable.
-- note: vX is used as both input X and output Y to save memory
local function evalPDF(vMean, vSigma, vX)
for i=1,vMean:size(1) do
local b = (vX[i]-vMean[i])/vSigma[i]
vX[i] = math.exp(-b*b/2)/(vSigma[i]*math.sqrt(2*math.pi))
end
return vX
end
assert(opt.multiSize > 1, "Multi-variate time-series")
vBias = torch.randn(opt.multiSize)
vMean = torch.Tensor(opt.multiSize):fill(5)
vSigma = torch.linspace(1,opt.multiSize,opt.multiSize)
sequence = torch.Tensor(opt.dataSize, opt.multiSize)
j = 0
for i=1,opt.dataSize do
sequence[{i,{}}]:fill(j)
evalPDF(vMean, vSigma, sequence[{i,{}}])
sequence[{i,{}}]:add(vBias)
j = j + 1
if j>10 then j = 0 end
end
print('Sequence:'); print(sequence)
-- batch mode
offsets = torch.LongTensor(opt.batchSize):random(1,opt.dataSize)
-- RNN
r = nn.Recurrent(
opt.hiddenSize, -- size of output
nn.Linear(opt.multiSize, opt.hiddenSize), -- input layer
nn.Linear(opt.hiddenSize, opt.hiddenSize), -- recurrent layer
nn.Sigmoid(), -- transfer function
opt.rho
)
rnn = nn.Sequential()
:add(r)
:add(nn.Linear(opt.hiddenSize, opt.multiSize))
criterion = nn.MSECriterion()
-- use Sequencer for better data handling
rnn = nn.Sequencer(rnn)
criterion = nn.SequencerCriterion(criterion)
print("Model :")
print(rnn)
-- train rnn model
minErr = opt.multiSize -- report min error
minK = 0
avgErrs = torch.Tensor(opt.nIterations):fill(0)
for k = 1, opt.nIterations do
-- 1. create a sequence of rho time-steps
local inputs, targets = {}, {}
for step = 1, opt.rho do
-- batch of inputs
inputs[step] = inputs[step] or sequence.new()
inputs[step]:index(sequence, 1, offsets)
-- batch of targets
offsets:add(1) -- increase indices by 1
offsets[offsets:gt(opt.dataSize)] = 1
targets[step] = targets[step] or sequence.new()
targets[step]:index(sequence, 1, offsets)
end
-- 2. forward sequence through rnn
local outputs = rnn:forward(inputs)
local err = criterion:forward(outputs, targets)
-- report errors
print('Iter: ' .. k .. ' Err: ' .. err)
if opt.plot then
logger:add{['Err'] = err}
logger:style{['Err'] = '-'}
logger:plot()
end
avgErrs[k] = err
if avgErrs[k] < minErr then
minErr = avgErrs[k]
minK = k
end
-- 3. backward sequence through rnn (i.e. backprop through time)
rnn:zeroGradParameters()
local gradOutputs = criterion:backward(outputs, targets)
local gradInputs = rnn:backward(inputs, gradOutputs)
-- 4. updates parameters
rnn:updateParameters(opt.learningRate)
end
print('min err: ' .. minErr .. ' on iteration ' .. minK)