Fitting SMPL-X to RenderPeople mesh model.
[mesh_data]
- rp_aaron_posed_014_OBJ
- rp_aaron_posed_014_100k.mtl
- rp_aaron_posed_014_100k_textured.obj
- rp_aaron_posed_014_dif.jpg
[data_root]
- rp_{subj_name} (subject_dir)
- depth
- images
- keypts
- skin
- pcd.ply
- pcd_body.ply
- pcd_normal.npy
- pose3d.npz
- skin_label.npy
$ docker pull jbjeong/research:human_fitting
$ conda activate py37
docker: jbjeong/research:human_fitting
$ cd {home}/human_fitting
$ python mesh_rendering.py --mesh_dir mesh_data --out_dir data_root
Output -> {depth, images, pcd.ply, pcd_normal.npy}
[code from: https://github.com/Jeanvit/PySkinDetection] docker: jbjeong/research:human_fitting
$ cd PySkinDetection/src
$ python main.py --dataset data_root
Output -> {skin}
$ cd {home}/human_fitting
$ python labeling_skin_point.py --dataset data_root
Output -> {pcd_body.ply, skin_label.npy}
docker: cwaffles/openpose-python
$ docker pull cwaffles/openpose-python
$ cd /openpose
$ cp {home}/human_fitting/openpose_run.py .
$ python openpose_run.py --root {home}/human_fitting/data_root
Output -> {keypts}
docker: jbjeong/research:human_fitting
$ cd {home}/human_fitting
$ python triangulation_mp.py --dataset data_root
Output -> {pose3d.npz}
Download SMPL-X model. (https://github.com/vchoutas/smplx#downloading-the-model).
Put the SMPL-X model named 'models' in smpl-fit folder.
-human_fitting
-smplx-fit
-models
-smplx
-SMPLX_MALE.npz
-...
docker: jbjeong/research:human_fitting
$ cd {home}/human_fitting/smplx-fit
$ python fit_smplx_torch.py --root /root/code/human_fitting/data_root
Output -> {
- result_step0.obj
- result_step1.obj
- result_step2.obj
- result_step3.obj
- result_step4.obj
- result_step5.obj
- result_step6.obj
- result_step7.obj
- result_step_face.obj
- result_step_fingers.obj
- result_step_wrist.obj
- output.obj
- output_aux.npz }