Skip to content

jchodera/jacs-dataset-analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Evaluating performance on the Schrödinger JACS dataset

This notebook is an analysis of the errors in relative free energy calculations from the Schrödinger JACS dataset:

Wang, L., Wu, Y., Deng, Y., Kim, B., Pierce, L., Krilov, G., ... & Romero, D. L. (2015). Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. Journal of the American Chemical Society, 137(7), 2695-2703.

http://doi.org/10.1021/ja512751q

Manifest

  • AMBER TI chemRxiv analysis - mapped edge DDGs.ipynb - analysis of mapped edge DDG statistics
  • AMBER TI chemRxiv analysis - DG and allpairs DDG.ipynb - analysis of DG and all-pairs DDG statistics
  • environment.yml - conda environment
  • LICENSE - copy of the MIT License this work is licensed under
  • jacs-analysis.pdf - figure produced by the analysis
  • fep-plus - SI retrieved from Schrödinger publication
  • amber-ti - AMBER TI results reported on chemRxiv

To use the notebook

Create a conda environment and activate it

conda env create -f environment.yml -n jacs
source activate jacs

Launch the notebook

jupyter notebook notebook.ipynb

About

Re-analysis of the Schrödinger JACS dataset

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published