The DeepDA model, which is a GAN model for oceanic DA, comprises a generator that implements partial convolution as well as a discriminator.
- Training with CESM2 Large Ensemble data set (csh/train.run.csh)
- Generate reanalysis (i.e., test) (csh/evaluate.run.csh)
-
You can download data set here (36.2GB): now unavailable
-
Put the downloaded 'data' directory into 'DeepDA'.
-
The data set consists of the following:
(1) Training set (CESM2 LE):
- Input 1) Traing_Dataset_Masked_CESM2_LE_Ocean_Potential_Temperature_Anomaly.nc 2) Observation_Mask.nc 3) Land_Mask.nc - Label 1) Traing_Dataset_CESM2_LE_Ocean_Potential_Temperature_Anomaly.nc
(2) Validation set (CESM2 LE):
- Input 1) Validation_Dataset_Masked_CESM2_LE_Ocean_Potential_Temperature_Anomaly.nc 2) Observation_Mask.nc 3) Land_mask.nc - Label 1) Validation_Dataset_CESM2_LE_Ocean_Potential_Temperature_Anomaly.nc
(3) Test set (Met Office Hadley Centre Intergrated Ocean Database, HadIOD 1.2.0):
- Input 1) HadIOD_version1.2.0.0_Ocean_Potential_Anomaly.nc 2) Observation_Mask.nc 3) Land_Mask.nc
- OS: Ubuntu 18.04.6 LTS
- GPU: Nvidia Tesla V100
- CUDA version: 11.4
- python = 3.6
- Tensowflow = 2.2.0 (https://www.tensorflow.org/install/)
- netCDF4 = 1.5.3
- numpy = 1.19.1
This project is covered under the MIT License.