Skip to content

Partial convolution GAN for the global oceanic data assimilation

License

Notifications You must be signed in to change notification settings

jeonghwan723/DeepDA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

69 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DeepDA

The DeepDA model, which is a GAN model for oceanic DA, comprises a generator that implements partial convolution as well as a discriminator.

Process of DeepDA

  1. Training with CESM2 Large Ensemble data set (csh/train.run.csh)
  2. Generate reanalysis (i.e., test) (csh/evaluate.run.csh)

Data set (data format: netCDF4)

  • You can download data set here (36.2GB): now unavailable

  • Put the downloaded 'data' directory into 'DeepDA'.

  • The data set consists of the following:

    (1) Training set (CESM2 LE):

    - Input
      1) Traing_Dataset_Masked_CESM2_LE_Ocean_Potential_Temperature_Anomaly.nc
      2) Observation_Mask.nc
      3) Land_Mask.nc        
    - Label
      1) Traing_Dataset_CESM2_LE_Ocean_Potential_Temperature_Anomaly.nc
    

    (2) Validation set (CESM2 LE):

    - Input
      1) Validation_Dataset_Masked_CESM2_LE_Ocean_Potential_Temperature_Anomaly.nc
      2) Observation_Mask.nc
      3) Land_mask.nc
    - Label
      1) Validation_Dataset_CESM2_LE_Ocean_Potential_Temperature_Anomaly.nc
    

    (3) Test set (Met Office Hadley Centre Intergrated Ocean Database, HadIOD 1.2.0):

    - Input
      1) HadIOD_version1.2.0.0_Ocean_Potential_Anomaly.nc
      2) Observation_Mask.nc
      3) Land_Mask.nc
    

Requirement (our environment)

License

This project is covered under the MIT License.

About

Partial convolution GAN for the global oceanic data assimilation

Resources

License

Stars

Watchers

Forks

Packages

No packages published